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Abstract

Stochastic Modelling and Approximate Bayesian Inference:
Applications in Object Tracking and Intent Analysis

Runze Gan

As two fundamental pillars of Bayesian inference for time series, stochastic modelling
and approximate Bayesian inference play crucial roles in providing accurate priors for
underlying random processes and addressing the challenges of evaluating posterior
distributions when exact computation is infeasible. Balancing novel contributions in
both areas, this thesis highlights innovative stochastic models in Chapters 2 and 3,
and puts emphasis on novel approximate Bayesian inference schemes in Chapters 4, 5,
and 6. Driven by applications in object tracking and intent inference, the developed
methodologies aim to accurately capture desired motion characteristics while enhancing
the effectiveness, efficiency, and robustness of estimations.

The applications of intent inference and single object tracking are considered in
Chapters 2 and 3. Chapter 2 presents a generic Bayesian intent inference framework
capable of predicting the destination of a tracked object, along with an exploration of
several mean-reverting stochastic processes that serve as dynamic models within the
framework. Chapter 3 develops novel α-stable Lévy state-space models for manoeuvring
object tracking and intent prediction, expressed in continuous time as Lévy processes.
These models effectively capture sharp changes in state induced by erratic maneuvers
with heavy-tailed α-stable driven noise, while maintaining an advantageous conditionally
Gaussian transition. Additionally, this chapter introduces an efficient intent inference
procedure that accommodates dynamically varying intent across the surveyed area,
offering versatile solutions for diverse tracking scenarios.

Chapter 4 introduces a novel conditionally factorised variational family that retains
dependence between desired variables at user-defined levels of detail. A new variational
Bayes algorithm is then proposed and implemented with importance sampling. It



viii

guarantees a better variational lower bound by choosing a finer conditional structure,
offering a flexible trade-off between computational cost and inference accuracy.

Multi-object tracking tasks are addressed in Chapters 5 and 6 with Poisson mea-
surement processes. Chapter 5 introduces a variational Bayes multi-object tracker that
effectively performs tracking, data association, and learning of target and clutter rates,
while offering substantial efficiency gains and parallelisable implementation. Chapter 6
extends this tracker to tackle highly challenging tracking scenarios involving a large
number of closely-spaced objects and heavy clutter. By introducing a novel variational
localisation strategy that quickly rediscovers missed targets under extremely heavy
clutter, the enhanced tracker can automatically detect and recover from track loss,
delivering outstanding performance in tracking accuracy and efficiency under difficult
tracking conditions.
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Chapter 1

Introduction

Bayesian inference [1] offers a coherent framework for incorporating prior knowledge
and updating it in light of new information, with broad applicability across diverse
disciplines such as science, philosophy, and engineering. At the heart of this framework
lies Bayes’ theorem. Independently developed in the 18th century by Thomas Bayes
[2] and Pierre-Simon Laplace [3], this theorem has since inspired a wealth of research
efforts, especially in recent decades. The work of this thesis builds upon this rich
tradition. Expressed in modern notation, Bayes’ theorem allows for the computation
of the posterior distribution of a random variable X given an observed variable Y :

p(X|Y ) = p(Y |X)p(X)
p(Y ) , (1.1)

where p(X) is the prior distribution that represents our initial knowledge of X, and the
conditional distribution p(Y |X) is the likelihood, which indicates how probable it is
for different values of X to produce the observed Y . The posterior distribution p(X|Y )
reflects our new understanding of X after taking the observed data into account. This
elegant formula ensures a mathematically consistent and systematic updating of prior
knowledge with new evidence.

One of the most appealing characteristics of Bayesian inference is its recursive
nature: when new observations become available, the posterior from the previous
time step may be used to build the new prior, enabling a continuous refinement of
beliefs in an online fashion. This recursive Bayesian inference mirrors the natural
progression from prior knowledge to updated knowledge as evidence accumulates over
time. Consequently, it underpins many sequential inference tasks, such as multi-object
tracking [4, 5] and online intent inference [6, 7] — the primary applications considered
in this thesis.
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To successfully implement Bayesian inference using Bayes’ rule in (1.1), two key
aspects must be addressed: 1) the proper definition of the prior distribution p(X), which
includes specifying the underlying stochastic process when X represents a collection of
time series variables; and 2) the evaluation of the posterior p(X|Y ) according to (1.1),
which may require approximation techniques when direct computation is intractable.
These aspects correspond respectively to the primary theoretical and methodological
focus of this thesis, namely stochastic modelling and approximate Bayesian inference.

Stochastic modelling aims to provide an accurate prior for the underlying random
process, capturing the inherent uncertainty and variability of the interested real-world
time series. This is particularly important for our considered application of object
tracking, where typically only limited amounts of data, possibly of unsatisfactory
quality, are received at each time step. Despite these challenges, reliable estimations
are required at every stage, making an accurate prior and, therefore, effective stochas-
tic modelling essential. This thesis addresses the stochastic modelling problem by
developing meaningful stochastic processes [8, 9] that match the desired characteristics
of the real-world time series, as informed by physical laws or empirical observations.
We will specifically focus on the stochastic modelling for object tracking and/or intent
inference, for which the constructed stochastic process serves as the motion/dynamic
model [10, 4] of the tracked object.

Approximate Bayesian inference addresses the challenge of evaluating the posterior
distribution p(X|Y ) when exact computation in (1.1) is not feasible. This research
area has gained more attention compared to stochastic modelling, as it is not only
relevant for sequential inference tasks but also for non-time series based machine
learning tasks. We refer to [11] for a concise recent review of such methods and [1, 12]
for more in-depth descriptions of specific approaches. In this thesis, we concentrate on
two popular approximate inference techniques: Monte Carlo methods and variational
inference. When dealing with tracking applications, we place emphasis on their
sequential implementation.

Besides the aforementioned components, a comprehensive Bayesian inference al-
gorithm also requires the definition of the likelihood function p(Y |X) in (1.1). For
object tracking, this function emerges from the sensor characteristics related to a
specific task, and its parametric form is often well-known due to the extensive de-
velopment in the tracking field for more than 50 years. While this thesis does not
introduce new likelihood functions (though it offers new interpretations of existing
ones, as in Section 5.2), it emphasises the development of stochastic modelling and
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approximate Bayesian inference, both of which are vital ingredients for conducting
recursive/sequential Bayesian inference for the considered tasks.

1.1 Background

While detailed introductions to the primary applications of this thesis will be pro-
vided in later chapters, including intent inference in Sections 2.1 and 3.1, as well
as multi-object tracking in Sections 5.1 and 6.1, we offer a concise review from the
methodology perspective in this section. This review will focus on stochastic modelling
and approximate Bayesian inference, encompassing the techniques utilised throughout
this thesis.

1.1.1 Stochastic modelling

This thesis utilises stochastic differential equations (SDEs) [13, 14] for the stochastic
modelling of the considered time series, offering several advantages. SDEs represent
the continuous-time evolution of a system or process influenced by both deterministic
and stochastic factors. The deterministic factor captures the overall trend of a process,
which allows for the integration of prior knowledge regarding the movement patterns
of the time series of interest. On the other hand, the stochastic factor naturally models
the uncertainty inherent in the evolution of the time series. Solving an SDE yields a
continuous-time and, in most cases, Markovian transition density. The continuous-time
property aligns with real-world movement in tracking applications, enabling more
accurate representations of the underlying process and estimation with asynchronous
measurements or inference between observation times. The Markovian characteristic
greatly simplifies the filtering process and improves computational efficiency. Overall,
employing SDEs for stochastic modelling offers a coherent and effective approach to
capture the dynamics and uncertainties of interested time series for Bayesian inference.

Multi-dimensional SDEs are often required in tracking applications to model not
just position, but also higher-order dynamics such as velocity and heading. Well-known
explicit solutions for multi-dimensional SDEs are restricted to linear cases, as detailed
in Section 4.3 of [14]. Scalar SDEs have slightly more general explicit solutions, as
outlined in Section 5.3 of [15]. Additional solvable SDEs can be found in [9]. For
general SDEs capturing desired characteristics of time series, numerical solutions or
approximations may be necessary, as covered in [14, 9]. Notably, exact simulation
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can be applied to more general SDE types [16, 17], facilitating accurate Monte Carlo
inference methods.

While the aforementioned (approximate) solution and exact simulation techniques
apply primarily to SDEs driven by Brownian motion, valuable SDEs can be driven by
more general Lévy processes [18]. See [19, 20] for the simulation of specific types of
Lévy processes, and [21] for the study of the SDEs they drive. In Chapter 3, we will
develop a model using one such SDE for tracking and intent inference applications.

In addition to creating entirely new SDEs for modelling the time series of interest,
new stochastic processes can be constructed by transforming known Markov processes.
Such transformations include conditioning, killing, time changes, state space trans-
formations, and others. See [8, 22] for introductions to these techniques. In Chapter
2, we will construct a new model using conditioning techniques to transform existing
widely-adopted processes for intent inference applications.

1.1.2 Approximate Bayesian inference

It is often the case that exact inference for posterior p(X|Y ) in (1.1) is analytically
infeasible, in which case approximate inference techniques can be used to handle the
approximation of posterior distribution. An important class of such approximation
inference approaches is variational inference [23], which seek to approximate the true
posterior distribution with a simpler, more tractable distribution. By transforming
the inference problem into an optimisation problem, it seeks to minimise the Kullback-
Leibler (KL) divergence (which measures the difference between two distributions)
between the true and approximated distributions. Such variational methods can handle
large data, and are demonstrated to be efficient in the tracking tasks considered in
this thesis, which will be detailed in Chapters 5 and 6.

Another important inference method is the probabilistic graphical model [24, 12, 25].
Graphical model approaches provide a simple way to visualise the structure of a
probabilistic model and to design inference algorithm by exploiting these graphical
structures [12]. For exact inference problems such as tree-structured graphs, the sum-
product and max-sum algorithms provide efficient solutions with local message passing
around the graph. However, for graphs with loops, approximate inference, known
as loopy belief propagation, was proposed with message passing rules [26]. However,
due to the cycles in the graph, the convergence of loopy belief propagation is not
guaranteed; In some applications, the algorithm will converge, whereas for others it
will not. For a detailed discussion, please see e.g. [26, 12].
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Besides these deterministic approaches, a more flexible and versatile scheme is
the Monte Carlo method [27], which is based on stochastic numerical sampling from
distributions. Monte Carlo sampling methods have the capacity to produce samples
from intricate, high-dimensional distributions, providing a more accurate representation
of the target distribution. However, they come with their own set of challenges, notably
the computational complexity and potential for slow convergence.

This thesis addresses the intractable posterior p(X|Y ) in (1.1) by employing Monte
Carlo methods [27] and variational inference [23, 28], the two predominant approximate
inference techniques. In this section, we first provide a brief review of the fundamental
concepts of variational inference and Monte Carlo methods in the context of non-
sequential inference. Subsequently, we discuss sequential approximate inference, also
known as approximate filtering.

1.1.2.1 Variational inference

While the exact posterior p(X|Y ) is intractable, variational inference aims to approx-
imate it by a variational distribution q(X) that minimises its KL divergence to the
exact p(X|Y ), i.e. KL(q(X)||p(X|Y )). However, without any restrictions on q(X), the
optimal variational distribution would be the exact posterior itself, which is not helpful
due to its intractability. Consequently, when implementing variational inference, an
initial step involves defining a variational family (encompassing all variational distribu-
tions to select from). From this family, a member is then selected that minimises the
KL(q(X)||p(X|Y )), providing a more tractable approximation. This process transforms
the intractable Bayesian inference problem into an optimisation problem, allowing
for the application of highly effective optimisation techniques. In the implementation
of variational inference, minimising KL(q(X)||p(X|Y )) is replaced by an equivalent
optimisation task: minimising the more manageable quantity known as evidence lower
bound (ELBO). More details can be found in [23] and Section 4.1.1 of this thesis.

A classical method in variational inference is coordinate ascent variational inference
(CAVI) [23, 12], also known as mean-field variational inference. CAVI assumes a mean-
field variational family and utilises the coordinate ascent algorithm to optimise the
ELBO. This method will be the primary focus of the thesis, with a more detailed review
of its properties and extensions in Sections 4.1.2. Over the past decade, several modern
variational inference algorithms have emerged to address the limitations of classical
CAVI in machine learning tasks. For instance, CAVI can be computationally expensive
for large datasets because each update iteration requires processing the entire dataset.
Stochastic variational inference [29] addresses this by leveraging stochastic optimisation
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and natural gradient methods, enabling updates with single data points or mini-batches,
and thus scaling CAVI to massive datasets. Additionally, classical CAVI does not
guarantee a well-known parametric form for the variational distribution and requires
laborious model-specific derivations. Black-box variational inference [30] overcomes
these issues by using stochastic gradient descent updates with a predefined parametric
form of the variational distribution. Similarly, the popular variational autoencoder [31]
addresses these limitations by employing an alternative type of stochastic gradient for
training neural networks. For other recent advancements of variational inference, see
[28].

Despite the aforementioned disadvantages of classical CAVI, it is important to note
that these drawbacks are generally not significant concerns for the signal processing
tasks considered in this thesis, such as object tracking. In these tasks, the data received
at each time step is usually not large, and the emphasis is placed on implementing
sequential inference. Furthermore, for the tracking tasks examined in this thesis,
the standard deterministic coordinate ascent variational update can yield well-known
parametric forms. As a result, the stochastic gradient descent employed in modern
variational inference to maintain the desired parametric form becomes unnecessary.
More importantly, whilst the stochastic gradient aims to approximate the exact gradient,
it nonetheless introduces random perturbations into the exact value. This can result in
suboptimal performance or slower convergence rates compared to exact gradient descent
or other deterministic optimisation used in classical CAVI. Additional disadvantages of
using gradient-based variational inference for more general inference tasks are discussed
in Section 4.1.3. Consequently, this thesis focuses on further developing CAVI for object
tracking and general signal processing tasks, rather than adopting the aforementioned
modern variational inference methods. Nonetheless, these methods offer valuable
directions for future exploration, depending on different model assumptions or task
requirements.

1.1.2.2 Monte Carlo methods

Although the exact posterior p(X|Y ) is intractable, Monte Carlo methods [27, 12] aim
to generate a large number of samples (say, Np) X(p) (p = 1, 2, ..., Np) from p(X|Y ).
These samples can then be used to form an empirical approximation of p(X|Y ) through
histograms, kernel density estimation, or simply by employing 1

Np

∑Np

p=1 δ(X(p)), where
δ(·) represents the Dirac Delta function, provided the samples are independent. A more
impactful application of Monte Carlo methods is evaluating the expectation of a desired
function Ep(X|Y )f(X). In many cases, this expectation is the primary requirement
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for the considered inference task, while the exact form of the posterior p(X|Y ) is less
critical. Monte Carlo methods provide a straightforward and unbiased estimate of
this quantity, denoted as f̂ = ∑Np

p=1 f(X(p)). Most importantly, when samples X(p) are
independent, the variance of this estimate scales with 1

Np
[27, 12] and hence converges

to 0 as Np becomes large. This implies that the estimate f̂ can approach the ground
truth with an arbitrary level of accuracy, provided the sample size is large enough. This
asymptotic property distinguishes Monte Carlo methods from variational inference,
where estimates derived from the variational distribution generally cannot guarantee
arbitrary accuracy.

However, this asymptotic property also suggests that Monte Carlo methods may
be slow, as a large number of samples are needed to achieve a small variance and,
consequently, an accurate estimate. Various techniques have been proposed to reduce
the variance of these estimates, including Rao-Blackwellisation, control variates, and
coupling random numbers/antithetic variables, among others. We refer readers to
Chapter 4 of [27] for more details. In this thesis, we will employ Rao-Blackwellisation
in a sequential Monte Carlo setting, which will be discussed later.

Although beneficial, implementing the simple Monte Carlo method described above
is generally challenging for most inference tasks, as directly generating samples from
the intractable posterior p(X|Y ) is often difficult. However, in most cases, we can
obtain an unnormalised posterior using the prior and likelihood in (1.1). Leveraging
this unnormalised posterior, various clever algorithms have emerged throughout the
history of Monte Carlo methods. Examples of these methods include rejection sampling,
which generates exact samples but can be inefficient; importance sampling, which
estimates the integral Ep(X|Y )f(X) but is often ineffective for high-dimensional variables
X and exhibits slight bias when only the unnormalised posterior, rather than the
exact posterior, is known (see e.g. Section 23.4.2 in [32]), though its implementation is
efficient; and Markov chain Monte Carlo (MCMC), which constructs a Markov chain
targeting the distribution p(X|Y ) and allows for approximately independent samples
once the chain has converged, but it can be slow. In addition to these methods, there
are many other sampling techniques, each with their own strengths and weaknesses.
These methods have numerous variants, with MCMC, in particular, encompassing a
wide range of ingenious algorithms (see [33]).

Despite the aforementioned drawbacks, importance sampling remains one of the most
straightforward and efficient sampling techniques to implement. Moreover, challenges
related to the curse of dimensionality can be alleviated through the utilisation of
improved proposal distributions or by adopting sequential implementations featuring a
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sequence of intermediate target distributions [34, 35]. In this thesis, our primary focus
will be on importance sampling, owing to its efficiency. This method will exclusively
be applied to low-dimensional variables, all of which have fewer than four dimensions
throughout the thesis.

1.1.2.3 Approximate sequential Bayesian inference

In sequential Bayesian inference or filtering processes [36], the exact posterior from
the previous time step is used to construct the new prior of the current time step
according to the transition density. This further challenges the tractability of the
inference result, as the size of the parameters that sufficiently define the posterior and
the computational cost required for each time step should not increase as the process
evolves over time to avoid escalating memory and computational cost requirements for
filtering. Aside from filtering process for hidden Markov models, which can be handled
with the forward-backward algorithm [37, 12] (requiring only the forward pass), and
linear Gaussian systems that can be addressed by the Kalman filter [38], sequential
(Bayesian) inference of general state-space models necessitates approximation. However,
it is worth noting that the Kalman filter can still produce the best linear estimator
(in minimising the mean square error senses) for linear non-Gaussian systems in a
sequential manner [39].

In the context of approximate filtering, a widely adopted intuitive approach, which
we refer to as empirical filtering, is used by many algorithms. This method involves
approximating the exact posterior with a simpler distribution and directly propagating
it to the next time step to construct a new prior and continue evaluating the posterior.
Although simple, this approach introduces new approximation errors at each time step.
These errors can be difficult to quantify, and there is a lack of literature addressing
this issue for extended Kalman filters [36], unscented Kalman filters [40], and other
general Gaussian filters [36]. In contrast, importance sampling particle filters have
established many sharp convergence results, with particularly strong results for models
possessing the exponential forgetting property; see [41–43] for details. Also, see [44] for
the theoretical support for sequential MCMC methods. These theoretical justifications
make sequential Monte Carlo methods more rigorous than other empirical filtering
algorithms. In this thesis, Rao-Blackwellised particle filters [45–47] will be utilised in
the first two chapters. See also the overviews of general importance sampling particle
filters [48, 43, 46]. Rao-Blackwellisation in these sequential Monte Carlo settings
not only reduces estimate variance [49] but also decreases the sampling dimension,
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significantly improving performance for multi-object tracking tasks where the sampling
variable, comprising all target states, has a large dimension [50].

Numerous works have implemented variational inference sequentially as approximate
filtering using the empirical filtering framework described earlier, such as in [51–53].
However, these methods are limited to specific models or a small class of models. In
Section 5.3, we will propose an approach for more general dynamic systems. Recently,
some research has proposed variational filtering methods that, instead of using the
empirical filtering framework, focus on optimising a KL divergence for the joint posterior
across all time steps in a sequential manner; see [54, 55]. These methods exhibit an
elegant structure as they treat the same objective over different time steps, with the
optimisation at each time step contributing incremental improvements to the objective.
However, the implementation of these methods relies on stochastic gradient descent
for optimisation and currently only applies to simple state space models (with only
one sequential variable to infer per time step, but potentially with large dimensions).
Moreover, it remains unclear whether these methods outperform simple empirical
filtering in terms of mean squared error, which would be an interesting topic for future
research.

Although this thesis primarily focuses on the Bayesian filtering task, it is worth
noting that other signal processing problems, such as smoothing [36, 56–58] and
parameter learning [41, 59, 60], also present interesting avenues for future exploration.

1.2 Thesis outline and main contributions

As two fundamental pillars of Bayesian inference, stochastic modelling and approximate
Bayesian inference each encompass vast research fields with extensive studies conducted
in each area. Recognising the impracticality of examining every facet of these extensive
fields, this thesis endeavors to strike a balance by making novel contributions in both
areas. In particular, Chapters 2 and 3 emphasise the development of innovative
stochastic models, while Chapters 4, 5 and 6 mainly contribute novel approximate
Bayesian inference schemes.

The methodologies developed in the thesis are primarily driven by applications in
object tracking and intent inference, aiming to capture desired motion characteristics
while enhancing the efficacy, efficiency, and robustness of the estimations. In particular,
the intent inference and single object tracking applications are considered in Chapters
2 and 3, while Chapters 5 and 6 focus on multi-object tracking tasks.
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In the following, we outline the research focus and primary contribution of each
chapter. A more comprehensive list of contributions can be found in the ‘Contribu-
tions’ section of each chapter. Moreover, Chapter 7 systematically highlights the
contributions, categorising them according to their relevance to stochastic modelling,
approximate inference, and application aspects.

Beginning with a motivating human computer interaction (HCI) example of pre-
dictive touch, Chapter 2 presents a generic Bayesian intent inference framework
capable of predicting the destination of a tracked object from a finite number of
nominal endpoints. This chapter establishes the fundamental assumptions for the
online intent inference task considered in this thesis and explains the rationale behind
the presented framework. In the context of stochastic modelling, the main contribution
is an exploration of several mean-reverting stochastic processes that can be employed
as dynamic models within the presented framework. Notably, one of the presented
models achieves the highest intent inference accuracy in the considered predictive touch
application to date.

In Chapter 3, we develop novel α-stable Lévy state-space models for manoeuvring
object tracking and/or intent prediction, expressed in continuous time as Lévy processes.
In contrast to conventional (fully) Gaussian formulations, the proposed models are
driven by heavy-tailed α-stable noise and are thus much more able to capture extreme
values/behaviours. This can better characterise sharp changes in the state, which
may be induced by sudden and frequent manoeuvres such as swift turns or abrupt
accelerations. The proposed models are constructed in a conditionally Gaussian form,
allowing for efficient sequential inference using a Rao-Blackwellised particle filter. With
great flexibility, the proposed stochastic modelling and inference framework can be
easily adapted to many widely adopted continuous-time dynamic models by replacing
Gaussian-driven noise with α-stable noise. Moreover, we introduce an efficient intent
inference procedure that accommodates a dynamically changing or static intended
endpoint anywhere within the surveyed area, unlike the approach taken in Chapter 2.

In previous chapters, Monte Carlo methods provided satisfactory estimation results
but faced limitations in complex real-time inference settings such as multi-object
tracking with clutter. To address this, we adopt the more efficient variational Bayes as
our primary inference paradigm in the subsequent three chapters.

Chapter 4 addresses the issue of large estimation errors in variational Bayes due
to the standard mean-field assumption for highly correlated variables. This chapter
introduces a novel conditionally factorised variational family featuring an adjustable
conditional structure that retains the dependence between desired variables, while
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also encompassing the standard mean-field family as a special case. The resulting
coordinate ascent updates are derived and approximated using importance sampling.
By choosing a finer conditional structure, our algorithm can be guaranteed to achieve
a better variational lower bound, offering a flexible trade-off between computational
cost and inference accuracy. We discuss and demonstrate this guaranteed performance
improvement over the standard mean-field variational Bayes in a simple example.

In the remaining two chapters, we address the challenges of data association for
multiple object tracking by employing the non-homogeneous Poisson process (NHPP),
a widely used model that elegantly handles objects generating zero or multiple mea-
surements.

Chapter 5 introduces the Variational Bayes Association-based NHPP Tracker
(VB-AbNHPP), which efficiently performs tracking, data association, and learning of
target and clutter rates with a parallelisable implementation. Additionally, the VB-
AbNHPP tracker can be easily extended for online learning of other static parameters,
such as object extent, within a general coordinate ascent variational filtering framework
developed in this chapter. Detailed derivations of the proposed tracker, including a
reasonable initialisation of the variational distribution and the efficient-to-implement
(though laborious-to-derive) variational lower bound, are provided. The results verify
the effectiveness of the rates learning and demonstrate that the proposed VB-AbNHPP
tracker outperforms competing methods in terms of implementation efficiency and
tracking accuracy.

Chapter 6 extends the VB-AbNHPP tracker from Chapter 5 to tackle highly
challenging tracking scenarios involving a substantial number of closely-spaced objects
and heavy clutter. To address these challenges, this chapter introduces a novel
variational localisation strategy that enables quick rediscovery of missed targets within
a large surveillance area under extremely heavy clutter. The proposed strategy employs
variational Bayes to seek the global optimum in an innovative manner. This strategy
is integrated into the standard VB-AbNHPP tracker, along with a proposed novel
track loss detection procedure, resulting in a robust VB-AbNHPP tracker that can
automatically detect and recover from track loss. In terms of both accuracy and
efficiency, this robust VB-AbNHPP tracker significantly outperforms existing trackers
in simulated challenging tracking environments.

Ultimately, Chapter 7 provides a summary of the thesis contributions and outlines
potential directions for future research.
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Chapter 2

Modelling Intent and Destination
Prediction within a Bayesian
Framework

In various scenarios, the motion of a tracked object, for example a pointing apparatus,
pedestrian, animal, vehicle and others, is driven by achieving a premeditated goal such
as reaching a destination. This is albeit the various possible trajectories to this endpoint.
This chapter presents a generic Bayesian framework that utilises stochastic models
that can capture the influence of intent (namely, destination) on the object behaviour.
It leads to simple algorithms to infer, as early as possible, the intended endpoint
from noisy sensory observations, with relatively low computational and training data
requirements.

In particular, this chapter will discuss several destination-reverting dynamic models
and their corresponding intent inference procedures. Part of this chapter was published
in [61]1. The intent inference framework is showcased in the context of novel predic-
tive touch technology for intelligent user interfaces and touchless interactions. The
framework can determine, early in an interaction task or pointing gesture, the interface
item a user intends to select on a display (e.g. touchscreen), thereby simplifying and
speeding up the selection process. This is shown to significantly improve the usability
of displays in vehicles, particularly when affected by perturbations from road and
driving conditions, and enable intuitive contact-free interactions. Data collected in
instrumented vehicles is used to demonstrates the effectiveness of the proposed intent
prediction approach.

1© 2020 Cambridge University Press. Reprinted, with permission, from [61]
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2.1 Introduction

In conventional sensor-level tracking the objective is typically to estimate the hidden
state xt of an object of interest (e.g. pointing apparatus, pedestrian, vehicle, vessel,
airplane, etc.), where xt is the target location, orientation, velocity, higher order
kinematics or other spatio-temporal characteristics. This state is assumed to be
related to the available noisy sensory measurements (e.g. from camera, radar, inertial
measurement units, radio frequency transmissions, global navigation satellite system,
acoustic signals, etc.) as per a defined observation model. A plethora of well-established
algorithms for estimating xt exist, including from multiple data sources, see [62, 4, 5].
They often implicitly assume that the object moves in an unpremeditated manner and
suitable motion models are accordingly employed.

In this chapter, the main objective is not to estimate the state xt, but instead to
infer the underlying intent that is driving the object motion, namely its destination.
This capitalises on the premise that the target motion (e.g. the trajectory followed
by a pointing finger whilst interacting with a display) is dictated by the intended
endpoint (e.g. the sought interface item), and that the destination influence on the
target movements can be modelled. Therefore, the sought probabilistic modelling and
destination predictor(s) belong to a higher system level compared with the sensor-level
tracking techniques, hence dubbed meta-level tracking algorithms [6]. They have several
applications, such as in surveillance, human computer interaction, robotics and others,
since such meta-level approaches can facilitate automated decision making, resources
allocation and informed future action planning. They offer a more integrated viewpoint
of a scene where intents can be automatically learnt and conflict or opportunities can
be identified in a timely manner. The HCI technology, dubbed predictive touch, is used
here as an application or motivation for the proposed Bayesian meta-level inference
framework. Nonetheless, this approach can be applied in numerous other areas and
scenarios.

2.1.1 Predictive touch

As a motivating application of the intent inference framework presented in this chapter,
we briefly introduce the predictive touch technology. For more information about
predictive touch, please refer to [61, 7].

Predictive touch is an emerging HCI technology for intelligent displays and touchless
interactions that predicts the intended interface component selection, notably early
in the pointing-selection task, based on available freehand pointing movements in 3D
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Fig. 2.1 Block diagram of an in-vehicle predictive touch system. The dotted line is a
recorded full in-car pointing trajectory. The gesture tracker (sensor is facing downwards
to increase the region of coverage and minimise occlusions) provides at time tn the
pointing finger/hand Cartesian coordinates along the x, y and z axes, denoted by yn.

and other sensory data, such as eye-gaze [7]. This technology can significantly reduce
effort and distractions associated with using in-vehicle displays while driving [63] and
improve usability of displays in moving platforms.

As illustrated in Fig. 2.1, predictive touch systems typically comprise four main
modules:

• Pointing Gesture Tracker : Provides the pointing hand/finger(s) location in 3D in
real-time. Gesture trackers are increasingly common in automotive, gaming, and
infotainment applications due to advancements in sensing and computer-vision
systems. The data used in this thesis are collected by the Leap Motion controller,
which employs optical sensors and infrared light to monitor an approximately
hemispherical area with an effective tracking range of 60cm. This sensor data is
subsequently integrated with an internal model of the hand and fingers to output
the position of a fingertip (the yn in Fig. 2.1). In instances where a finger or its
segments are obscured, the system estimates the finger’s characteristics based on
recent observations and the anatomical hand model. It’s worth noting that the
gesture tracker may also provide information on the direction of finger pointing,
the positions of other fingertips, hand orientation, and arm movements [64].
Although this additional information could be valuable for the intent inference
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task under consideration, we opt not to utilise it here to maintain both simplicity
and a level of generalisability to broader tracking contexts such as vehicles and
animals.

• Intent Predictor : Calculates the likelihood of each selectable interface icon being
the intended destination using available pointing trajectory data.

• Selection Facilitation: Simplifies and expedites the selection task based on
prediction results through various facilitation schemes. Studies have shown that
pointing time can be reduced by over 30% and effort/workload halved with
predictive touch [7].

• Additional Data: Utilises available sensory data to improve prediction results,
such as inertial measurements, eye-gaze data, and environmental data.

Predictive touch allows users to interact with displays without physically touching
them, improving usability and performance. The technology also enables interaction
with new display technologies, such as head-up displays, holograms, and 3D projections.
This novel HCI solution uses the intuitive free hand pointing gestures and intrinsically
relies on predicting the user intent, rather than using the pointing finger/arm location
or orientation as a pointing apparatus as in [65]. Unlike gesture-recognition-based
interactions [66], predictive touch does not require users to pre-learn specific gestures
and offers design flexibility in display placement and GUI design. This promotes
inclusive design practices by tailoring display operation to user requirements through
configurable prediction algorithms and facilitation schemes.

2.1.2 Related work and contributions

The Bayesian framework for intent prediction presented in this chapter was introduced
in [67] and [68] for predictive touch and other applications. It treats the problem within
an object tracking formulation, albeit not necessarily seeking state estimation, such
that the influence of intended destination is captured by utilising suitable stochastic
motion model with a few unknown parameters. The latter parameters can be estimated
from a small number of example motion patterns or trajectories. Linear Gaussian
systems were considered in the aforementioned papers and more recently nonlinear
behaviour due to external forces (e.g. jumps and jolts in the pointing movements due
to the road/driving conditions) was briefly addressed in [69].
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The main objective of this chapter is to explain the rationale of Bayesian intent
inference framework and provide a unified treatment of the intent prediction task. The
contributions include:

1. An overview of linear and nonlinear (albeit within a conditionally linear formula-
tion) motion models and systems, along with their corresponding intent inference
procedures, is provided. Notably, the developments of the Equilibrium Reverting Ac-
celeration model (Section 2.3.1.1), the mean-reverting jump diffusion model (Section
2.3.2), and the intent inference procedure that utilises particle filter-based likelihood
computation (Section 2.4.2), are all original contributions of mine, as detailed in
[69];

2. Among the intent-driven models discussed, the pseudo-observation bridging distri-
bution (BD) is articulated as a distinct stochastic process. This is in contrast to
its original presentation in [70], where it was entangled with the intent inference
procedure. The transition density of this stochastic process is explicitly given in
equations (2.15) and (2.18) for the first time. Following this, an intent inference
procedure that is based on evaluating the likelihood of this process is introduced in
Algorithm 1;

3. The newly tested bridged (nearly) constant acceleration (CA) dynamic model,
which has not been incorporated in the new or original BD formulations [70, 68]
before, is evaluated here for various BD formulations and shown to deliver the
highest prediction performance for a predictive touch system;

4. We benchmark various prediction models using significantly larger data set of
pointing gestures recorded in instrumented vehicles under various road-driving
conditions.

Concerning the second contribution, it’s pivotal to emphasise that the motivation
behind reformulating the BD model (in Section 2.3.1.2) and introducing its inference
procedure Algorithm 1 isn’t solely about outclassing other BD variants [68, 70] in
either accuracy or efficiency. Notably, all BD methodologies should exhibit comparable
inference accuracy given their analogous foundational principles. Our primary aims
remain: 1) To provide a stochastic process interpretation for the pseudo-observation BD
model, 2) To deliver more intuitive inference strategies rooted solely in evaluating the
likelihoods of pseudo-observation BD processes that are driven by varying destinations.

In the tracking area, incorporating known predictive information to improve the
accuracy of state estimation has a long history, e.g. [71] and [72]. Additionally, mean-
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reverting models such as those derived from an Ornstein–Uhlenbeck (OU) process
(defined later in Section 2.3.1.1 to satisfy the stochastic differential equation (2.4)),
with known means, were to better estimate behavior of certain objects, e.g. vessel [73]
or financial time series data in [74]. Also, the use of stochastic context-free grammar
(SCFG) and conditionally Markov process/reciprocal process has been proposed to
predict intent as in [6, 75, 76]. In this chapter, the destination (i.e. intent) is assumed
to be unknown and predictors are developed to infer it. The adopted formulation here
leads to significantly simpler algorithms with no constraints on the trajectory followed
by the object (e.g. freehand pointing finger), unlike those using SCGF which discretise
the state space. The employed continuous state space models within the introduced
Bayesian framework, such as OU process-based model and bridging distributions (both
are detailed in Section 2.3), enable treating asynchronous sensory measurements. A
noteworthy fact is that the bridging distribution can be viewed as special case of
conditionally Markov models in [76] under certain assumptions.

On the other hand, modelling and inferring complex intentions, such as drivers
behaviours at junctions, pedestrians at crosswalks and human daily activities, can
be tackled with data-driven or classification approaches, possibly combined with a
priori learnt pattern of life. They assume the availability of sufficiently complete and
diverse training data sets with several well-established such prediction techniques, for
example [77], [78] and [79]. However, in this chapter the objective is to develop a
simple and computationally efficient destination prediction algorithm where limited
training data is available. For example, it can be very challenging and expensive to
collect data sets of 3D freehand pointing gestures that sufficiently sample possible
paths/trajectories to the display, starting locations of the gesture (e.g. steering wheel,
armrest and others), road/driving conditions, context of use, user interface design,
screen size/reach, etc. Instead, suitable state space models are employed here, albeit
with a few unknown parameters, as is common in object tracking. They enable
modelling and robustly inferring the intended endpoint of a tracked object, especially
that the possible intentions are a finite set of nominal destinations, e.g. selectable
interface items. Subsequently, the introduced Bayesian intent predictors have minimal
training requirements.

2.1.3 Layout

The remainder of this chapter is organised as follows. Section 2.2 presents the funda-
mental assumptions and overall inference framework. Various approaches to modelling
intent and the dynamic model are described in Section 2.3. Destination predictors
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for linear and nonlinear settings are then outlined in Section 2.4. Results using real
pointing data, recorded by in-vehicle predictive touch prototypes under various road
conditions, are presented in Section 2.5 and conclusions are drawn in Section 2.6.

2.2 Fundamental assumptions and Bayesian intent
inference framework

In this chapter, the destination inference problem is addressed within a Bayesian frame-
work, focusing specifically on scenarios with a finite number of possible destinations
to be inferred. The inference framework that accommodates an infinite number of
possible destinations and/or allows a time-varying intent will be presented in the next
chapter. This section sets up fundamental assumptions for the considered destination
inference problem and introduces the Bayesian intent inference framework.

2.2.1 Notations and fundamental assumptions

The considered meta-level tracking problem adopts some of the same basic assumptions
as those in a typical sensor-level tracking problem. Specifically„ we assume that the
tracked object (e.g. pointing finger) moves in continuous-time, and the sensor (e.g.
gesture tracker) observes it at discrete time instants t1 < t2 < t3 < · · · < tN . The
sensory measurement received at time instant tn is denoted by the column vector
yn. We denote the column vector xt as the tracked target’s kinematics state at an
arbitrary time instant t, and abbreviate xtn , i.e. the kinematics state captured by
the measurement yn, as xn. We define the abbreviation y1:n = [y⊤

1 ,y⊤
2 , ...,y⊤

n ]⊤, and
similarly, x1:n = [x⊤

1 ,x⊤
2 , ...,x⊤

n ]⊤.

2.2.2 Bayesian intent inference framework

Consider a scenario with ND nominal endpoints, indexed by i = 1, 2, ..., ND, where one
of these endpoints represents the true destination of the tracked target. In this thesis,
the endpoint/destination may be a fixed point, or a distribution of possible points,
defined perhaps by a Gaussian density, as will be made clear in the following contexts.
Denote the index of the intended destination of the tracked target as a discrete random
variable D, and evidently, its domain is D ∈ {1, 2, ..., ND}. This implies that the event
of the i-th nominal endpoint being the intended destination can be described by D = i.
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The objective here is to infer the tracked target’s intended destination (represented
by its index D) using noisy sensory measurements observed from the target. To this end,
it is necessary to establish a probabilistic relationship between these measurements and
the target’s intended destination D. A reasonable approach to develop this relationship
is by postulating that the intended destination D influences the target’s kinematic state
transitions, acting as an underlying parameter. This is because the intended destination
would naturally impact the target’s movement. Consequently, through the observation
model, the intended destination D also affects the sensory measurements, enabling the
inference process. This approach transforms the destination inference problem into a
parameter learning/model calibration problem, which has been extensively studied in
the field of signal processing.

Subsequently, we assume that the random variable D is one of the dynamic model’s
parameters, conditioned on which, the dynamic model reflects the influence of the
intended destination on the target’s movement, e.g. having a tendency to move to the
nominal endpoint indexed by D. In particular, our knowledge of the basic information
on the ND potential destinations, such as location and geometry, can be used to
construct/define such destination-driven dynamic models. This will be detailed in
Section 2.3.

Now, inferring the intended destination from the ND nominal endpoints becomes
inferring the underlying model parameter D from its domain {1, 2, ..., ND}. Subse-
quently, the objective of our Bayesian intent inference is to sequentially calculate the
probability of each endpoint (e.g. selectable interface components) being the intended
destination, i.e. D = i, i = 1, 2, ..., ND, at the current/latest time instant tn, thus
p(D = i | y1:n), i = 1, 2, ..., ND, from the available sensory measurements y1:n. We
recall that in a predictive touch system observations y1:n are provided by the gesture
tracker and other sensors at the successive time instants t1, ..., tn, for instance yn is the
3-D Cartesian coordinates of the pointing finger/hand at tn as in Fig. 2.1. For each
i = 1, 2, ..., ND and per Bayes’ rule, we have

p(D = i|y1:n) ∝ p(y1:n|D = i)p(D = i), (2.1)

where p(D = i) is the prior probability of the i-th endpoint being the intended
destination. In predictive touch this prior can be attained from semantic data, frequency
of use, interface design, other sensory data, etc. The task of the inference module (i.e.
Intent Predictor in Fig. 2.1) at tn is hence to estimate the likelihoods p(y1:n|D = i),
i = 1, 2, ..., ND. This makes the Bayesian formulation particularly appealing since
additional contextual information can be easily incorporated, whenever available.
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2.2.3 Observation model

We assume the available sensory measurement yn (e.g. gesture-tracker output) is a
noisy observation of the true hidden state xn (e.g. pointing finger actual location).
Here and for simplicity, a linear and Gaussian measurement model is assumed. In a
state space form, it is described at time tn by

yn = Hxn + wn, (2.2)

where wn is the zero mean i.i.d. Gaussian noise where wn ∼ N (0,Vn). For instance,
if the gesture tracker provides locations of the pointing finger in 3-D and latent state
xn ∈ R3 consists only of the object location, the observation matrix in (2.2) would be a
3× 3 identity matrix, denoted as H = I3. The noise covariance matrix Vn is specified
by the tracker accuracy, i.e. in terms of determining the pointing finger position.

Note that the measurement model in (2.2) is formulated with xn but without
information about the intended destination. This is consistent with the fact that
most sensors can directly observe information such as the kinematic state, but not the
underlying intention. Subsequently, the assumed measurement model in (2.2) implies
the following conditionally independent factorisation:

p(y1:n|x1:n,D = i) =
n∏

k=1
p(yk|xk). (2.3)

2.3 Destination-driven motion models

Recall that, based on our assumption in Section 2.2.2, the dynamic model of the tracked
target is conditioned on the intended destination D, which serves as a parameter of the
model and drives the target’s movement. Then, a key challenge within the introduced
inference framework is to employ suitable motion models that represent the effect
of intent on the object’s motion. In other words, we need to define an appropriate
transition density for the destination-driven dynamic model p(xn|x1:n−1,D) for all
possible intended destinations D ∈ {1, 2, ..., ND}. The object motion in our considered
scenario demonstrates a tendency to move towards the destination, such as the fingertip
moving towards an intended item on a display. Consequently, the dynamic model
governed by the transition p(xn|x1:n−1,D = i) should exhibit a mean-reverting behavior
towards the i-th nominal endpoint. In this section, we investigate and present various
options for constructing such models.
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In this chapter, the destination-driven motion model is formulated as continuous-
time Markov or conditional Markov process. This is because it aligns with the
continuous nature of the object’s movement being tracked; and the (conditional)
Markov property is commonly assumed for computational convenience in sequential
inference tasks. As a result, the transition probability p(xn|x1:n−1,D = i) simplifies
to p(xn|xn−1,D = i) for all i = 1, 2, . . . , ND in the case of a Markov model. For the
conditional Markov model, the transition probability p(xn|x1:n−1,D = i, C) reduces to
p(xn|xn−1,D = i, C), where C is a specific condition that will be elaborated upon in
Sections 2.3.1.2 and 2.3.2.

Moreover, the transition p(xn|x1:n−1,D = i) is inherently stochastic, which is
necessary for carrying out probabilistic inference with the received measurements. The
stochastic nature of the transition also reflects the fact that object motion, such as
the movement of a fingertip towards an intended item on a display, is driven by a
very complex sensorimotor system, capable of autonomous action based on various
modalities (e.g. vision and can utilise feedback on the action) and is also subjected
to various constraints (e.g. to optimise action required to deliver/predict smooth
movement trajectories and minimise the variance of the eye or arm’s position, in the
presence of biological noise due to mechanical properties of muscles) and possibly
perturbed by external forces such as due to road/driving conditions or walking, see
[80].

2.3.1 Linear Gaussian motion models

Simple approximate motion models, which focus on inferring intent rather than provid-
ing a highly accurate representation of the object motion, can suffice for the task of
destination prediction. Under this assertion, linear Gaussian models can be particularly
favourable since they can be easily formulated and lead to computationally efficient
prediction algorithms, compared with non-linear non-Gaussian models [81, 62]. Next,
two classes of linear Gaussian intent-driven models, namely OU process-based model
and (arrival time conditioned) bridging distributions, are introduced.

2.3.1.1 Ornstein–Uhlenbeck process-based models

The OU process with mean reverting property offers an effective way to model the
destination-driven behaviour. By setting the mean term of the underlying model
according to the destination information, the target would revert to the premeditated
endpoint and finally arrive somewhere nearby. We now discuss the formulation for the
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model that reverts to the i-th endpoint, i.e. conditioned on the event D = i. Under
this setting, the OU-based models can be described in continuous time by the following
linear time invariant stochastic differential equation (SDE),

dxt = A(µi − xt)dt+ σdβt, (2.4)

where βt is a multivariate standard Wiener process. Before introducing the parameter-
isations for 3-D pointing movements, an illustration is provided below to clarify the
intuition behind this SDE.

Breaking down the Ornstein–Uhlenbeck SDE (2.4) with simple examples
In SDE (2.4), setting σ to 0 transforms the equation into the ordinary differential
equation (ODE):

dxt

dt
= A(µi − xt). (2.5)

This ODE can depict several dynamic systems with physical implications when
we appropriately define xt and the parameters A,µi. As an illustration, when

xt =
xt

ẋt

 , A =
 0 −1

η
m

ρ
m

 , µi =
 l
0

 , (2.6)

our ODE (2.5) then reads:

dxt

dt
= ẋt,

m
dẋt

dt
= η(l − xt)− ρẋt.

Given that η, ρ, andm are all positive, this captures the dynamics of a point object
of mass m moving in one-dimensional space. Here, xt represents the position
and ẋt denotes the velocity. The object is drawn towards position l by a force
η(l− xt) (akin to the spring’s restoring force). Concurrently, a force ρẋt opposes
its motion (analogous to air resistance or damping). To introduce stochasticity
into this system, one might imagine to add an independent, extremely small
Gaussian white noise into the applied force for every infinitesimal time increment.
Formally, this stochastic system can be represented by the SDE (2.4). Use the
same xt,A and µi as in (2.6), but now with σ = [0, σ]⊤, and βt as a scalar
standard Wiener process.
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For a 3-D pointing movement, we have the following parameterisations for the
SDE (2.4): xt = [x⊤

t,1,x⊤
t,2,x⊤

t,3]⊤, with xt,s ∈ R2 (position and velocity) or R3 (position,
velocity and acceleration), s = 1, 2, 3, and

A = diag{A1,A2,A3}, µi = [µi,1,µi,2,µi,3]⊤, σ =


σ1 0 0
0 σ2 0
0 0 σ3

 , βt =


βt,1

βt,2

βt,3

 .
(2.7)

Different kinematics included in each ‘sub-state’ xt,s along with the corresponding
parameters lead to distinct SDEs as per equation (2.4), for instance: a) the Mean
Reverting Diffusion (MRD) model which only includes position in the state [67], b)
Equilibrium Reverting Velocity (ERV) that model position and velocity [67], and
c) Equilibrium Reverting Acceleration (ERA) representing position, velocity and
acceleration [69]. These three models have similar mean reverting behaviour, that is,
the state will revert to the mean term µi, e.g. set as the destination position for MRD
and with (nearly) zero velocity and acceleration for ERV and ERA, respectively. Here
we only discuss the setup for ERA model for simplicity, while other models follow
the similar rationale, refer to [67] for further details. For ERA, the sub-matrices and
vectors in equation (2.7) for the sth dimension are

As =


0 −1 0
0 0 −1
η ρ γ

 , µi,s = [pi,s, 0, 0], xt,s =


xt,s

ẋt,s

ẍt,s

 , σs =


0
0
σ

 , (2.8)

where pi,s is the position of the i-th nominal endpoint in the s-th dimension, and
ẋt,s, ẍt,s denote the second and third derivative (velocity and acceleration) of xt,s. The
above setup assumes independent transitions for each coordinate, specifically, it can be
specified by the following SDE,

dẍt,s = η(pi,s − xt,s)dt− ρẋt,sdt− γẍt,sdt+ σdβt,s. (2.9)

One can see that the object motion governed by such an SDE will initially gravitate
to the destination position (i.e. pi,s prescribed in the mean vector µi,s of this OU
process) with increasing acceleration due to the positive reversion factor η, then the
positive damping factor ρ and γ would guarantee the target slows down and arrives
the destination in an equilibrium state, with nearly zero velocity and acceleration. To
ensure wide-sense stationarity of the system in (2.9), the model parameters should have
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(a) ERA velocity samples (b) Real pointing data

Fig. 2.2 The 3D norm velocity profile generated by the ERA model is shown in (a),
where the black lines are 100 random realisations, the red line is the mean of them,
and the blue line shows the deterministic transition of the norm velocity of the same
ERA model. (b) shows the velocity profile from 95 real pointing data, where the red
line is the mean trajectory.

the following relationship 0 < η < ργ. This can be proved by applying Routh-Hurwitz
stability criterion [82] for a third-order system.

The aforementioned velocity behaviour can be demonstrated as the blue line in Fig.
2.2(a), which is the deterministic transition (i.e. with σ in (2.9) being zero) of the norm
velocity of the ERA model. The norm velocities of an ERA model depicted in Fig.
2.2(a), i.e. sample realisations as well as their mean, are generated from the parameters
manually tuned to maximise the intent prediction accuracy. They noticeably capture,
on average, an overall profile similar to that exhibited by the real pointing gesture data
shown in 2.2(b).

Solving (2.4) yields the general discrete linear Gaussian Markov transition function
for all three models (MRD, ERV and ERA) as per,

p(xn|xn−1,D = i) = N (xn|Fi,hxn−1 + Mi,h,Qi,h) (2.10)
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such that

h = tn − tn−1,

Fi,h = e−Ah,

Mi,h = (I− e−Ah)µi,

Qi,h =
∫ h

0
e−A(h−v)σσ⊤e−A⊤(h−v)dv.

(2.11)

Whereas, A, µi, and σ are parameters set for the specific model, I is the identity
matrix with the corresponding size. The derivation of this solution and calculation for
Qi,h can be found in [67] and references therein.

A notable extension of the OU-based model introduced above involves incorporating
the geometric information of the destination. This can be achieved by modelling the
endpoint position pi,s, s = 1, 2, 3, in (2.8) as a static random variable, where its
covariance accounts for the destination’s geometry. Specifically, when this variable is
Gaussian, the tractability of the inference task can be maintained. This extension also
enables direct inference on the intended destination’s position without restricting it
to one of the finite nominal endpoints. An example of such a destination prediction
method will be introduced in the next chapter.

2.3.1.2 Bridging distributions

While the destination information is modelled above by the mean of the OU process,
another approach to incorporate such knowledge can be provided by the bridging
distributions method. This is particularly relevant if we use a known or legacy motion
model, which does not encapsulate the influence of intent on the object motion, as seen
in numerous models found in tracking literature, such as the nearly constant velocity
(CV) and acceleration (CA) models; see [10] for a comprehensive overview. Additionally,
in some scenarios an OU process might not accurately characterise the destination
reverting behaviour of the tracked object. In such cases, bridging distributions permit
more free underlying motion dynamics and at the same time ensures the object arrival
at/near its endpoint.

Bridging distributions (BDs), introduced as a terminology in [68], and later further
developed in [70], represent a destination-driven model/stochastic process. The BD
definitions from both [68] and [70] have slight variations, which will be detailed
in the following contexts. Generally, BDs capture the destination influence on the
target behaviour by constructing a Markov bridge between the intended endpoint and
the target current state at tn. This capitalises on the premise that the trajectory
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followed by the object (e.g. pointing finger) must terminate at the endpoint (on-display
selectable interface item), at arrival time T , despite the random behaviour between
the current time step tn and T . BDs accordingly introduce this knowledge into a
motion model via a prior and facilitates destination-aware behaviour modelling without
requiring the development of specialised stochastic processes that are intrinsically
intent-driven. Nonetheless, BDs may be applied to OU-type models for means dictated
by a destination or not, for endpoint-driven OU process BDs can reduce their sensitivity
to parameterisation as discussed in [68].

Assuming that the target will reach the destination at time tN = T , a terminal
state is defined as xN . At their core, BDs represent a stochastic process formed
by altering a standard Markov process, based on available destination knowledge.
One significant effect of this alteration, or transformation, is a heightened certainty
about the prior of terminal state xN . The state transition density of BDs, which
conditions on the destination and the arrival time, can be expressed as the conditional
distribution p(xn|xn−1,D = i, T ). There exists several ways of finding this conditional
density and they may differ based on the made assumption(s). For example, [68]
assumes the terminal state xN has exactly the same position as the i-th nominal
endpoint, and the destination-related information is introduced via a Gaussian prior
at t0, p(xN |D = i, T ) = N (xN |ai,Σi) with ai being the mean, Σi the covariance
matrix and i = 1, 2, . . . , ND. This covariance can model the size and orientation of the
endpoint, allowing destinations in the BD model to be represented as regions rather than
single spatial points. Incorporating this uncertainty in the destination is particularly
important for BD destination-driven models. Without such uncertainty, the kinematic
state at time instant T would be a deterministic point that cannot be corrected by
any noisy measurements. Additionally, the model assumes that the desired transition
density, when conditioned on the terminal state (i.e. p(xn|xn−1,D = i, T ,xN)), is
equivalent to the standard conditional Markov transition density p(xn|xn−1,xN , T ),
which can be evaluated as follows,

p(xn|xn−1,xN , T ) ∝ p(xn|xn−1)p(xN |xn, T ), (2.12)

where the Markov assumption p(xN |xn,xn−1, T ) = p(xN |xn, T ) is used. Given the fact
that the terminal state xN is fixed, one can construct a joint state vector zn = [xn,xN ]⊤

and obtain the transition density for zn accordingly. The joint state transition will
ultimately lead xn to its terminal state xN which follows the prior p(xN |D = i, T ).
When observations are available, such a construction of zn permits a joint estimation
on destination and kinematic state.
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An alternative formulation of BDs can be found in [70], in which the destina-
tion information is interpreted as a ‘pseudo-observation’ instead of as a state prior.
Specifically, a linear and Gaussian pseudo-observation model,

p(ỹi
N = ai|xN) = N (ai|G̃xN ,Σi), (2.13)

was considered, where ỹi
N is a pseudo-observation of the terminal state xN . The

pseudo-observation matrix, G̃, relates to the available information about the terminal
state xN . Our understanding of the distribution of G̃xN is represented by N (ai,Σi).
As an illustration, when we have knowledge only of the destination’s spatial aspects, G̃
should extract the positional details from xN . Meanwhile, ai and Σi should respectively
denote the mean and covariance of the i-th endpoint’s region. Subsequently, the sought
conditional Markov transition density is defined as

p(xn|xn−1,D = i, T ) = p(xn|xn−1, ỹi
N = ai, T ). (2.14)

This transition is implicitly used in [70], Algorithm 2 to predict the destination. Here
we explicitly derive its detailed form:

p(xn|xn−1,D = i, T ) = p(xn|xn−1, ỹi
N = ai, T )

∝ p(xn, ỹi
N = ai|xn−1, T )

=
∫
p(xn,xN , ỹi

N = ai|xn−1, T )dxN

=
∫
p(ỹi

N = ai|xN)p(xN |xn, T )p(xn|xn−1)dxN . (2.15)

Similar to (2.12), the Markov assumption p(xN |xn,xn−1, T ) = p(xN |xn, T ) is applied
here. Moreover, using techniques such as the d-separation principle [12], it can
be demonstrated that the transition on the right-hand side of (2.14) is conditional
Markovian. Specifically, p(xn|xn−1,x1:n−2, ỹi

N = ai, T ) = p(xn|xn−1, ỹi
N = ai, T ). As a

result, the sought transition density p(xn|xn−1,D= i, T ) defined by (2.14) also exhibits
the conditional Markov property. This ensures that, when conditioned on T , the
exact filtering procedure with this stochastic process can be efficiently executed by the
recursive Bayesian filter, which will be employed for intent inference in Section 2.4.1.2.

Motivated by the pseudo-observation-based formulation of BDs, in this chapter we
introduce a new intent prediction algorithm which utilises (2.15) as its main ingredient.
Similar to [70] and [68], we will focus on linear Gaussian models because they lead to
analytically tractable results. First, consider the following linear time invariant SDE,
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Fig. 2.3 Visual representations of a pseudo-observation-based BD-CA process over time
for a single spatial dimension. From left to right: (a) p(xn|D = i, T ); (b) p(ẋn|D = i, T );
(c) p(ẍn|D = i, T ); (d) velocity norm. All horizontal axes represent time, scaled relative
to the terminal time T . Vertical axes denote respectively the value of x, ẋ, ẍn, and
velocity norm. Dashed lines indicate distribution means. For the generation of this
figure, parameters are set as G̃ = I, Σi = 0); in this case the distribution at the
endpoint (asterisk) reduces to p(xN |D = i, T ) = δai

(xN ) with δ(·) being the Dirac delta
function.

where xt = [xt, ẋt, ẍt, yt, ẏt, ÿt, zt, żt, z̈t]⊤ has the same physical meaning as in Section
2.3.1.1 (i.e. position, velocity and acceleration in 3-D Cartesian coordinates),

dxt = Axtdt+ σdβt. (2.16)

Here, A and σ are block diagonal matrices with the same number of blocks as in
(2.7), but with different block forms. Specifically, As = [0, 1, 0; 0, 0, 1; 0, 0, 0], and
σs = [0, 0, σ]⊤ (s = 1, 2, 3). The definition of βt is consistent with that in (2.7),
meaning it represents a multivariate standard Wiener process. It can be shown that
the transition density resulting from this SDE is of the form:

p(xn|xn−1) = N (xn|Fhxn−1,Qh), (2.17)

with Fh being the state transition matrix, Qh the process noise covariance and h =
tn − tn−1. In comparison to (2.10), this transition density has no dependency on a
destination. When the process noise level is relatively low, (2.17) corresponds to the
nearly CA model (also known as the Wiener-process acceleration model). Substituting
(2.17) into (2.15) yields

p(xn|xn−1,D = i, T ) ∝
∫

N (ai|G̃xN ,Σi)N (xN |FT −tnxn,QT −tn
)N (xn|Fhxn−1,Qh)dxN

∝ N (ai|G̃FT −tnxn, G̃QT −tn
G̃⊤ + Σi)N (xn|Fhxn−1,Qh)

= N (xn|Fi,hxn−1 + Mi,h,Qi,h), (2.18)
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where

Fi,h = Qi,hQ−1
h Fh,

Mi,h = Qi,hLai,

Qi,h =
(
Q−1

h + LG̃FT −tn

)−1
,

L = (G̃FT −tn)⊤(G̃QT −tn
G̃⊤ + Σi)−1.

(2.19)

Here (2.18) functions as the transition density for the pseudo-observation process.
This process adheres to the law of p(xn|ỹi

N = ai, T ), based on which the state will
evolve under the guidance of destination information. Fig. 2.3 gives an example of
the marginal distributions obtained according to the above pseudo-observation process
where the influence of the endpoint on the state distribution over time is evident.
It can also be shown that the limiting distribution, limtN =T →∞ p(xN |D = i, T ), of a
state process having (2.18) as its transition density equates to N (ai,Σi) when G̃ = I.
Moreover, setting G̃ = I and Σi = 0 results in a state transition density identical to
(2.12), which corresponds a canonical Gaussian bridge [83] terminating at a specific
state, given that the endpoint xN is certain. It should be stressed that the form of
mapping matrix G̃ depends on what destination-related information is available at
hand and thus it is not necessarily equal to an identity matrix; any such matrix can be
incorporated into (2.18).

The state transition distributions in equations (2.12) and (2.15) build the destination
knowledge into the state dynamics and thus form the basis of BD-based destination-
driven (or destination-constrained) motion models. For all nominal endpoints i =
1, 2, ..., ND, a total of ND bridges are constructed, with one bridge per endpoint (under
the condition D = i). In scenarios where we want the terminal state xN at T as well as
xn at the current time step tn to be jointly estimated, the transition model prescribed
by (2.12) may be utilised. However, if the main objective is to predict the intended
destination as in this chapter with available information on the nominal endpoints
(e.g. a certain region/area represented by an ellipsoidal shape), (2.15) can be used to
construct a computationally efficient predictor since the hidden state dimension in this
case is less than that of the joint estimation scheme (i.e. includes xN). In Section
2.4.1.2, we present a new intent predictor based on the destination-constrained prior as
with (2.15). In comparison to [67], the new predictor requires less computations as it
does not estimate the terminal state at tN . It is constructed using pseudo-observation
and therefore the underlying state process is still a Markov process. It also differs
from the pseudo-observation-based intent predictors presented in [70] in that it utilises
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a destination-constrained state transition density throughout the filtering procedure
(although this implies a slightly higher computational burden). Finally, a pseudo-
measurement technique for jointly estimating the object state and its destination is
presented in [84] based on a linear equality constraint. It dictates that the object follows
some straight line to its intended endpoint. Although this simplifies the inference
procedure as the condition of arrival time is avoided, it does not capture realistic
motion behaviour of several objects of interest (e.g. constraint-free pointing motion
in 3-D). On the contrary, the presented stochastic modelling is general and does not
impose such restrictive constraints on the target trajectory.

2.3.2 Conditionally linear Gaussian model

The computationally efficient Gaussian model assumes that the change in the object
motion (i.e. pointing movements) in any time interval always follows a Gaussian
distribution. However, for some irregular movements which cause rapid spatial changes
(e.g. jolts in the pointing motion due to perturbations or any external non-intent-driven
force; see the example of perturbed pointing trajectories in Fig. 2.4 on page 44), such
an assumption is unsuitable and can lead to large inference errors. In order to model
such erratic perturbations-induced manoeuvres, we introduce a pure jump process to
the original (destination-aware) Gaussian processes. Such formulations are known as
jump diffusion models or Markov/Semi-Markov Jump models.

The adopted jump diffusion models retain the Brownian motion as one of the driven
noise, and thus they can be considered as a conditionally linear Gaussian system. In
particular, when the non-Gaussian pure jump process is given as a condition, the
dynamics can be constructed in a standard Gaussian form to ensure the inference
tractability.

Such approaches have been extensively adopted in financial modelling to describe
the discrete movements [85], and in object tracking field to capture sudden manoeuvres
undertaken by the target or induced by external forces [81]. Owing to the clear physical
representation and computation tractability, such jump diffusion dynamical models
have also been employed in [86] and [69] within a predictive touch system under high
levels of perturbations due to road-driving conditions. The approach presented in
[86] embedded a self-decay jump process within a Gaussian process to pre-process the
highly-perturbed pointing data, with the aim to obtain a smoothed trajectory for the
later intent inference task, whereas [69] introduces a jump diffusion model for a unified
scheme for destination and state estimation. In this chapter, we mainly discuss the
latter recent work given its improved performance.
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Since target motion (e.g. pointing gesture movements) impacted by severe external
perturbations or fast manoeuvring still exhibits destination-reverting behavior, we
formulate the destination-driven model (conditioned on D = i) as a jump diffusion
process, adapted from the linear mean-reverting SDE in (2.4):

dxt = A(µi − xt)dt+ σdβt + BdJt, (2.20)

where A,µi,σ,βt have the same definitions as in (2.7). If we assume that the jumps
only occur at key driving elements of the state (e.g. position for MRD, or acceleration
in ERA), the parameter B = diag{B1,B2,B3} (for 3-D movements) such that Bs =
[0, 0, 1]⊤ (s = 1, 2, 3) for ERA and [0, 1]⊤ for ERV. The multivariate jump process Jt

here is a compound Poisson process with Gaussian distributed jump size. Specifically,
we have Jt = ∑

τk<t Sk, with the jump size Sk ∈ R3 and Sk ∼ N (Sk|µJ ,ΣJ). Note
that if isotropic distributed jump (i.e. the jump on each direction of the space are
identically distributed) is considered, the parameters can be simplified as µJ = 0
and ΣJ = σ2

JI, where σJ is defined as the standard deviation of the jump size in any
dimension. The jump time τk is defined as the arrival times of a homogeneous Poisson
process with rate λJ . It can be showed that the interarrival time satisfies the property
τk − τk−1 ∼ expλJ

(·), where λ−1
J is the mean value of the jump interarrival time. This

property defines the transition p(τk|τk−1) and can be used to sample the jump time
from the prior.

Solving SDE (2.20) yields the conditional Markov transition density as follows,

p(xn|xn−1, τn−1:n) = N (xn | µ∗
n,Σ∗

n), (2.21)

with

h = tn − tn−1,

µ∗
n = Fi,hxn−1 + Mi,h +

∑
tn−1<τk≤tn

Fi,tn−τk
BµJ , (2.22)

Σ∗
n = Qi,h +

∑
tn−1<τk≤tn

Fi,tn−τk
BΣJB⊤F⊤

i,tn−τk
, (2.23)

where Fi,h, Mi,h and Qi,h have been given in (2.11) for the OU-type SDE, and we
define the jump time sequence τn−1:n as the collection of all jump times that occurred in
the interval (tn−1, tn], i.e. τn−1:n = ⋃

tn−1<τk≤tn
{τk}. The derivation of (2.22) and (2.23)

are straightforward and similar results can be found in [81] and [74]. Subsequently,
the sought transition density, when conditioned on the jump time sequence, can be
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expressed as

p(xn|xn−1,D = i, τn−1:n) = N (xn | µ∗
n,Σ∗

n), (2.24)

where µ∗
n,Σ∗

n are given in (2.22) and (2.23).

2.4 Destination prediction

The overall system is described by the destination-driven motion models in Section
2.3 and the linear Gaussian observation model in (2.2). Next, we introduce various
destination inference algorithms to calculate the sought probabilities p(D = i|y1:n),
i = 1, 2, ..., ND, in (2.1). As shown below, the intent inference routine complexity is
dependent on the employed motion model. For instance, a linear Gaussian set-up
leads to a simple and computationally efficient Kalman filer-based predictor for the
destination inference task.

Recall from (2.1) that the key to sequentially infer the probability of a nominal
endpoint i being the intended destination is to estimate the likelihood p(y1:n|D = i).
Furthermore, this likelihood can be recursively expanded according to prediction error
decomposition (PED) [87] given by

p(y1:n|D = i) = p(yn|y1:n−1,D = i)p(y1:n−1|D = i). (2.25)

This sequential likelihood estimation serves as the basis of online Bayesian intent
predictor as it only requires the evaluation of predictive likelihood p(yn|y1:n−1,D = i)
at each time instant. In this section, we discuss the strategy to compute this predictive
likelihood for the various models introduced in Section 2.3.

2.4.1 Linear Gaussian systems

Although the destination-driven models in Section 2.3.1 are designed to have linear
Gaussian transition densities, it is worth noting that only the OU-based models possess
a purely linear Gaussian transition p(xn|xn−1,D = i). In contrast, the BD-based
model’s transition p(xn|xn−1,D = i, T ) is linear Gaussian only when conditioned on a
specific static parameter — the arrival time T . Assuming a linear Gaussian observation
model (e.g. for an off-the-shelf gesture tracker) in (2.2), the standard Kalman filter
is sufficient for carrying out recursive state estimation (in both the Bayesian optimal
and minimum mean square error sense [62]) and intent inference that computes the
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exact p(D = i|y1:n) when tackling the OU-based models or the arrival time-conditioned
BD-based models.

2.4.1.1 OU-based intent predictors

Given that the transition density for the OU-based model in (2.10) and the observation
function in (2.2) are both linear Gaussian, the posterior and predictive distribution of
the target state can be explicitly represented as normal distributions. Specifically,

p(xn|y1:n,D = i) = N (xn|µi
n|n,Ci

n|n), (2.26)
p(xn|y1:n−1,D = i) = N (xn|µi

n|n−1,Ci
n|n−1). (2.27)

The predictive likelihood can be computed as follows,

p(yn|y1:n−1,D = i) =
∫
p(yn|xn)p(xn|y1:n−1,D = i)dxn. (2.28)

With the observation model in (2.2), this results in a Gaussian likelihood:

p(yn|y1:n−1,D = i) = N (yn|µi
yn
,Ci

yn
)

µi
yn

= Hµi
n|n−1,

Ci
yn

= HCi
n|n−1H⊤ + Vn.

(2.29)

To compute µi
n|n−1 and Ci

n|n−1 at each time step, the standard Kalman filter is required
to estimate the state recursively, summarised as follows,

p(xn|y1:n−1,D = i) =
∫
p(xn−1|y1:n−1,D = i)p(xn|xn−1,D = i)dxn−1, (2.30)

p(xn|y1:n,D = i) ∝ p(yn|xn)p(xn|y1:n−1,D = i). (2.31)

The corresponding matrix description is

µi
n|n−1 = Fi,hµi

n−1|n−1 + Mi,h,

Ci
n|n−1 = Fi,hCi

n−1|n−1F⊤
i,h + Qi,h,

K = Ci
n|n−1H⊤Ci

yn

−1
,

µi
n|n = µi

n|n−1 + K(yn − µi
yn

),
Ci

n|n = (I−KH)Ci
n|n−1,

(2.32)
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where Fi,h,Mi,h,Qi,h are given in (2.11) for OU-based model. The above equations
outline the the computation of predictive likelihood for a single time step. The likelihood
for each destination being the intended one can then be sequentially evaluated with
(2.1), (2.25) and (2.29).

2.4.1.2 BD-based intent predictor using pseudo-observation formulation

In principle, BD-based intent predictors, including those in [68, 70] and the new
approach introduced here, all utilise (2.1) and (2.25) for inferring the target destination
from the available noisy sensory observations. However, for the BD approach proposed
here, the closed-form likelihood p(y1:n|D = i, T ) is conditioned not only on the
destination-specific parameters (in this case, ai and Σi), but also on T , which represents
the arrival time at the destination. Given the additional conditioning on an unknown
arrival time T , (2.25) needs to be revised as follows:

p(y1:n|D = i, T ) = p(yn|y1:n−1,D = i, T )p(y1:n−1|D = i, T ), (2.33)

based on which p(y1:n|D = i) can be obtained via

p(y1:n|D = i) =
∫
p(y1:n|D = i, T )p(T |D = i)dT , (2.34)

where p(T |D = i) is the prior distribution on the unknown arrival time. In general,
the above integration is not analytically tractable and numerical approximation can
be implemented. This is especially viable since the arrival time is a one-dimensional
quantity (and thereby the integral). In this chapter, we will adopt the same quadrature
approximation scheme as in [68] for obtaining (2.34).

Henceforth, the aim is to compute the arrival time-conditioned likelihood (i.e. the
unknown arrival time is treated as if it is available). We illustrate how to develop
an intent predictor based on the destination-constrained process defined in Section
2.3.1.2. Given observations up to tn, the T -conditioned likelihood term of interest can
be expressed by

p(yn|y1:n−1,D = i, T )

=
∫
p(yn|xn)p(xn|xn−1,D = i, T )p(xn−1|y1:n−1,D = i, T )dxn−1dxn, (2.35)

where the first component in the integral is the observation density, the second
component is the destination-constrained state transition density as defined in (2.15)
and the last component is a filtering distribution obtained at time tn−1. Next, we outline
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how to calculate p(yn|y1:n−1,D = i, T ) at each time step for a linear Gaussian dynamic
system. For simplicity and without loss of generality, we use the same underlying
state model as with (2.17) with destination information incorporated via (2.13). This
implies the availability of the destination-conditioned transition density in equation
(2.18). With a linear Gaussian observation model in (2.2), we have

p(yn|xn) = N (yn|Hxn,Vn), (2.36)

where H is the observation matrix and Vn is the measurement noise covariance matrix.
As a result, the filtering distribution p(xn−1|y1:n−1,D = i, T ) at the previous time step
tn−1 can be obtained using a standard Kalman filter in which (2.18) is used as the
state transition density. Assuming at tn, we have obtained the filtering distribution
provided by the Kalman filter associated with the i-th nominal endpoint from the last
time step tn−1 as

p(xn−1|y1:n−1,D = i, T ) = N (xn−1|µi
n−1|n−1,Ci

n−1|n−1), (2.37)

with µi
n−1|n−1 and Ci

n−1|n−1 being the mean and covariance respectively. By substituting
(2.36), (2.18) and (2.37) into (2.35), the sought likelihood can be shown to be

p(yn|y1:n−1,D = i, T )

=
∫

N (yn|Hxn,Vn)N (xn|Fi,hxn−1 + Mi,h,Qi,h)N (xn−1|µi
n−1|n−1,Ci

n−1|n−1)dxn−1dxn

=N
(
yn | H(Fi,hµi

n−1|n−1 + Mi,h), H(Fi,hCi
n−1|n−1F⊤

i,h + Qi,h)H⊤ + Vn

)
, (2.38)

where Fi,h,Mi,h,Qi,h is given in (2.19) for the BD model. The above calculation can
be further simplified by noticing that

µi
n|n−1 = Fi,hµi

n−1|n−1 + Mi,h

Ci
n|n−1 = Fi,hCi

n−1|n−1F⊤
i,h + Qi,h

(2.39)

are actually the mean and covariance of the intermediate distribution p(xn|y1:n−1,D =
i, T ) = N (xn−1|µi

n|n−1,C
i
n|n−1) obtained at the Kalman prediction step. As a result,

there is no need to re-calculate these two quantities twice.
Combining (2.33), (2.38) and (2.34), p(y1:n|D = i) can be evaluated sequentially

when new measurements become available. To complete the intent prediction algorithm,
the above calculation needs to be performed for each nominal endpoint i = 1, 2, ..., ND.
Furthermore, when a quadrature approximation scheme is used, (2.38) needs to be
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Algorithm 1: BD-based intent predictor
1 Input: Observations: {y1:N}, Pseudo-observations: {ai,Σi}1≤i≤ND ,

T = {Tq}1≤q≤NT .
2 Initialisation: ND ×NT Kalman filters, each initialised with mean µi,q

0|0 and
covariance Ci,q

0|0.
3 for n = 1 : N do
4 for i = 1 : ND do
5 for Tq ∈ T do
6 Construct the intent-driven transition density p(xn|xn−1,D = i, Tq)

via (2.18).
7 Standard Kalman prediction to obtain µi,q

n|n−1 and Ci,q
n|n−1 via (2.39).

8 Standard Kalman update to obtain µi,q
n|n and Ci,q

n|n.
9 Compute: li,qn = p(yn|y1:n−1,D = i, Tq) via (2.38).

10 Update Tq-conditioned likelihood via (2.33):
p(y1:n|D = i, Tq) = Li,q

n = Li,q
n−1 × li,qn

11 end
12 Approximate p(y1:n|D = i) numerically using {Li,q

n , q = 1, 2, . . . , NT }.
13 end
14 Obtain destination posterior at tn: p(D = i|y1:n) ≈ p(y1:n|D=i)×p(D=i)∑ND

j=1 p(y1:n|D=j)×p(D=j)
.

15 end

evaluated at each quadrature point of T = {Tq, q = 1, 2, . . . , NT }. A detailed imple-
mentation note is summarised in Algorithm 1. It is noted that a guidance on the choice
number of quadrature points for BD methods can be found in [68].

At each time step n, the intent inference procedure presented in Algorithm 1 requires
NDNT Kalman filter runs. This is the same as the intent inference procedure of the
original BD methods, as described in Algorithm 2 of [68]. However, each Kalman filter
run in the latter has a higher computational demand due to the estimation of the
augmented joint states of xn and xN , making our Algorithm 1 more computationally
efficient overall. Nonetheless, it’s worth noting that the intent inference approach
in Algorithm 1 of [70] remains superior in computational efficiency compared to our
Algorithm 1. This advantage stems from its exploitation of specific mathematical
properties to bypass the Kalman filter predictions (2.39) for each BD model driven by
various destinations. For further details, refer to [70].
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2.4.2 Intent predictors for jump diffusion models

The jump diffusion model introduced in Section 2.3.2 is constructed in a conditionally
Gaussian form as shown in (2.21). Specifically, the transition density from time t to t+h
is a Gaussian density if the nonlinear component jump time sequence τt:t+h is given as
a condition. Thus an efficient strategy would be estimating τt:t+h using a Monte Carlo
approach, then for each sample of τt:t+h, p(xt+h,i|xt,i, τt:t+h) is retained as Gaussian
form so that the standard Kalman filter can be employed to carry out the estimation.
This strategy, known as Rao-Blackwellisation [27, 45], aims to enhance estimation
accuracy (by reducing estimator variance) by incorporating analytical computations
into the Monte Carlo methods as much as possible.

Additionally, the particle filter used here is known as the variable rate particle filter
(VRPF) [81, 74, 88]. The key difference between the VRPF and the standard particle
filter lies in the nature of the time series variables of interest, which are set to be inferred
through sampling. In the VRPF, these time series variables have different time index
from when the observations are made, resulting in sampling that occurs at variable
rates in relation to when observations are taken. In contrast, the standard particle filter
samples the state precisely at the observation times. The use of the VRPF facilitates
the detection of changepoints in the dynamics between consecutive observations. This
approach enables more complicated dynamic models where characteristics, such as the
transition density’s parametric form, can vary at a sequence of changepoint times (i.e.
the jump times), and both the variation and change times are random and can be
estimated from unsynchronised observations.

When ND possible destinations are considered, the same number of particle filters
are required, each with NP particles for a particular nominal endpoint. Here, we allow
the ND different particle filters to share the same sample set of jump times. This
not only reduces the inference computational complexity, but can also circumvent
spurious large differences between the likelihoods of the various endpoints, induced by
individual sample outlier(s). Nonetheless, this particular consideration is not expected
to noticeably impact the intent prediction performance since the aim in this chapter
is not to accurately estimate the object state or the individual destination likelihood
p(y1:n|D = i). Instead, the focus is on comparing the likelihoods for all nominal
destinations, calculated under the same conditions, in order to determine the intended
endpoint from the observed motion. At time tn, each variable rate particle filter
stores the samples τ (p)

0:n (p = 1, 2, ..., NP), the normalised weight ω(p,i)
n , the mean µ

(p,i)
n|n

and covariance C(p,i)
n|n for Gaussian density p(xn|y1:n, τ

(p)
0:n,D = i). Subsequently, the
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empirical estimations for jump time and state can be described as follows,

p(τ0:n|y1:n,D = i) ≈
NP∑
p=1

ω(p,i)
n δ

τ
(p)
0:n

(τ0:n), (2.40)

p(xn|y1:n,D = i) ≈
NP∑
p=1

ω(p,i)
n N (xn|µ(p,i)

n|n ,C
(p,i)
n|n ). (2.41)

Accordingly, the predictive likelihood can be approximated as (see e.g. [43, 46])

p(yn+1|y1:n,D = i) =
∫
p(yn+1|y1:n, τ0:n+1,D = i)p(τn:n+1|τ0:n)p(τ0:n|y1:n,D = i)dτ0:n+1

≈
NP∑
p=1

ω̃
(p,i)
n+1 , (2.42)

where the updated weight ω̃(p,i)
n+1 , in the bootstrap particle filter setting, is defined as

ω̃
(p,i)
n+1 = ω(p,i)

n p(yn+1|y1:n, τ
(p)
0:n+1,D = i). (2.43)

The detailed derivation of (2.43) can be found in [69]. The new jump time samples τ (p)
n:n+1,

in the corresponding (bootstrap) setup, are propagated according to the homogeneous
Poisson process with rate λJ , whose transition is described in Section 2.3.2,

τ
(p)
n:n+1 ∼ p(τn:n+1|τ (p)

0:n). (2.44)

More details on the sampling procedure of τn:n+1 according to (2.44) can be found in
[69]. Subsequently, the normalised weight can be computed with ω̃

(p,i)
n+1 in (2.43) as

ω
(p,i)
n+1 = ω̃

(p,i)
n+1∑NP

p=1 ω̃
(p,i)
n+1

. (2.45)

Similar to (2.28), the p(yn+1|y1:n, τ
(p)
0:n+1,D = i) in (2.43) can be computed in a closed

form with the stored mean µ
(p,i)
n|n and covariance C(p,i)

n|n , i.e.

p(yn+1|y1:n, τ
(p)
0:n+1,D = i) = N (yn+1|Hµ

(p,i)
n+1|n,HC(p,i)

n+1|nH⊤ + Vn+1), (2.46)
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where

µ
(p,i)
n+1|n =Fi,hµ

(p,i)
n|n + Mi,h +

∑
tn<τ

(p)
k

≤tn+1

F
i,tn+1−τ

(p)
k

BµJ ,

C(p,i)
n+1|n =Fi,hC(p,i)

n|n F⊤
i,h

+
∑

tn<τ
(p)
k

≤tn+1

F
i,tn+1−τ

(p)
k

BΣJB⊤F⊤
i,tn+1−τ

(p)
k

+ Qi,h.

(2.47)

In order to update the stored density mean µ
(p,i)
n+1|n+1 and covariance C(p,i)

n+1|n+1, the
following standard Kalman filter updated steps are required:

µ
(p,i)
n+1|n+1 = µ

(p,i)
n+1|n + K(yn −Hµ

(p,i)
n+1|n),

C(p,i)
n+1|n+1 = (I−KH)C(p,i)

n+1|n,

K = C(p,i)
n+1|nH⊤(HC(p,i)

n+1|nH⊤ + Vn+1)−1.

(2.48)

The procedure described above constitutes a complete variable rate particle filtering
procedure for a single time step. The overall intent prediction algorithm is summarised
as Algorithm 2.

2.5 Results

The performance of the discussed destination prediction methods is assessed below
using free hand pointing gestures recorded in vehicles instrumented with a predictive
touch system as in Fig. 2.1. This system used the off-the-shelf sensor, Leap Motion
[64], which tracks hand and finger positions in 3-D during the pointing-selection
tasks, at a rate exceeding 30 Hz. The introduction of this pointing gesture tracker is
provided in Section 2.1.1. The utilised dataset contains 95 trajectories pertaining to
four participants whilst undertaking pointing-selection tasks under various road and
driving conditions. Here, we divide this data into two sets:

i). Dataset A with all 95 pointing tracks; this allows us to perform a comprehensive
comparison between different algorithms for various levels of present perturbations
(e.g. static, motorway driving and off-road driving).

ii). Dataset B with 10 trajectories when the user input was subjected to severe level of
noise due to driving on a badly maintained road or off-road driving. This dataset
is a subsect of Dataset A and was collected in a Land Rover. It is particularly
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Algorithm 2: Intent inference with the jump model
1 Initialisation: Create ND variable rate particle filters, each with NP particles.

For each particle p and each destination label i, initialise the mean as µ
(p,i)
0|0 ,

covariance as C(p,i)
0|0 , and weight as ω(p,i)

0 .
2 for n = 1 : N do
3 for particles p = 1 : NP do
4 Sample the jump time sequence from prior τ (p)

n−1:n from (2.44).
5 end
6 for endpoints i = 1 : ND do
7 if Resample then
8 Resample particles and set weights ω(p,i)

n−1 = 1/NP .
9 end

10 for particles p = 1 : NP do
11 Evaluate the predictive mean µ

(p,i)
n|n−1 and covariance C(p,i)

n|n−1 via
(2.47).

12 Calculate the updated weight ω̃(p,i)
n according to (2.43)(2.46).

13 Update the mean µ
(p,i)
n|n and covariance C(p,i)

n|n via (2.48).
14 end
15 Compute the predictive likelihood p(yn|y1:n−1,D = i) from (2.42).
16 Calculate the normalised weight ω(p,i)

n according to (2.45).
17 Calculate likelihood p(y1:n|D = i) in (2.25).
18 end
19 Determine endpoint probability: p(D = i|y1:n) in (2.1).
20 end

relevant to examine the outcome of the algorithms that incorporate a jump process,
i.e. employ jump diffusion models.

During the above interaction tasks, an experimental user interface with multiple
selectable circular icons was displayed on a touchscreen mounted to the car dashboard.
The number of selectable icons is ND = 21 for Dataset A, and ND = 37 for Dataset B.
Two typical pointing trajectories of each dataset are presented in Fig. 2.4. Similar to
the common ISO 9241 pointing task2, often referred to as Fitt’s law task, one randomly

2The ISO 9241-411 standard [89] specifically outlines two types of point-select tasks for assessing
the performance of non-keyboard input devices. These are: 1) one-directional point-select tests, which
focus on movements along a single axis; and 2) multi-directional point-select tests, which involve more
intricate movements in various directions. The main metric for evaluation in both tests is ‘throughput’,
measured in bits per second, capturing both the speed and accuracy of the input device. An example
of a multi-directional tapping task will be discussed in Section 3.6.1 in a subsequent chapter. See the
original standard [89] for further details.
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(a) Dataset A (21 icons) (b) Dataset B (37 icons)

Fig. 2.4 Example trajectories of collected real pointing trajectories.

chosen GUI item is highlighted at a time and the user is expected to select it. Identical
uniform prior is placed on all of the interface items, i.e. p(D = i) = 1/ND for all
nominal endpoints i = 1, 2, ..., ND in order for the results to be comparable to those in
previous work.

2.5.0.1 Performance metrics and discussions

In this chapter, we use two metrics to evaluate the predictor’s performance: aggregate
inference success and timely successful prediction over the pointing duration. Both
metrics employ a Maximum A Posteriori (MAP) criterion, which selects the most
probable icon as follows:

În = arg max
i=1,2,...,ND

p(D = i | y1:n),

Here, În is the index of the most probable destination estimated at the n-th time
step. More specifically, the aggregate inference success is defined as the proportion
of the total pointing gesture duration (in time), from its start at t0 until touching
the display surface at time tN , during which the predictor correctly inferred the true
index of the endpoint, ITrue ∈ {1, 2, ..., ND}. The timely successful prediction captures
the percentage of the correct prediction over all tested dataset as a function of the
percentage of pointing task duration, thus indicating how early the predictor assigns
the highest probability for the correct destination.
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These two metrics have been deemed valuable in several prior studies, e.g. [90,
67, 7, 68]. However, an important observation is that both metrics, computed using
the strict MAP estimate În in (2.49), don’t consider the confidence level of the MAP
estimate. This means that a destination predictor that is significantly off-mark (e.g.
where p(D = ITrue | y1:n) = 0) and one that’s just narrowly incorrect (e.g. where
p(D = ITrue | y1:n) is just 1% lower than the p(D = În | y1:n)) are equivalently labeled
as erroneous by these metrics. While this may seem like a limitation, in practical
scenarios, intent predictor often render a single definitive outcome without conveying
the underlying uncertainty. For instance, the user of a predictive touch only need an
accurate prediction of the intended icon, rather than understanding the confidence
or uncertainty of the prediction. In this context, a predictor that’s either slightly or
significantly wrong is equally unhelpful.

The question then arises: is there a metric that can capture both prediction
uncertainty and the real-world applicability of an intent predictor? The answer is
affirmative. In fact, one could incorporate prediction uncertainty to enhance the
reliability of an intent predictor’s output. Ideally, a predictive touch system should
quickly and confidently select the right icon, avoiding mistakes. An intent predictor,
thus, should make a selection only when there’s high certainty. Therefore, a possible
metric, which accounts for both prediction uncertainty and the definitive decision
making in the real-world intent predictor, could evaluate the accuracy of these ‘confident’
predictions (this can be defined as the proportion of dataset where the ‘confident’
predictions is correct) and the time taken to reach such a decision. However, this
presents a new challenge: defining ‘confidence’ in a prediction. This definition can vary
(for example, where p(D = În | y1:n) first hits a threshold like 0.75), and the performance
under the metric would be influenced by this choice. Therefore, this section adheres
to the precedent set in [90, 67, 7, 68], using aggregate inference success and timely
successful prediction metrics. These metrics are free from such arbitrary determinations
and provide a balanced assessment of different algorithms’ intent inference capabilities.

2.5.0.2 Parameter selections

All models examined in this section have their parameters approximately tuned by
hand to give a satisfactory level of performance in a range of data examples. This
hand-tuning process comprises two stages: coarse tuning and fine tuning. Both are
akin to grid searching but vary in their discretisation levels.
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• Coarse Tuning: This preliminary phase involves examining a set of parameter
values that span a broad spectrum. The primary objective here is to identify a
general parameter space that yields reasonable performance.

• Fine Tuning: Post the coarse tuning, this phase narrows its focus, probing deeper
into specific regions near the promising parameter values identified earlier. The
aim here is to pinpoint those ‘local optima’ where the parameter values produce
superior performance.

During the coarse tuning phase, the inherent physical interpretations of our model,
an advantage of our stochastic process with physical meaning, may guide the exclusion of
certain parameter ranges. For instance, considering the linear Gaussian mean-reverting
model discussed in Section 2.3.1.1 on page 26: an increased reversion parameter,
η, results in a more forceful tendency towards the endpoint. This necessitates an
increased damping factor ρ (and possibly γ) to maintain reasonable finger speed at the
touchpoint/destination. As such, emphasis is placed on configurations where both the
reversion parameter and the damping factor rise in tandem. Furthermore, the noise
parameter σ can influence the model’s adaptability to varying datasets, such as static
pointing versus perturbed pointing. A large σ leads to high motion uncertainty, making
it more likely to capture the perturbed pointing behaviour. Consequently, given the
mix of perturbed and static data in the comprehensive test dataset, multiple ‘local
optima’ for σ might emerge that cater to an overall good performance. This calls for a
meticulous exploration of various σ values to avoid overlooking an optimal parameter
setting.

However, it’s imperative to highlight certain limitations associated with tuning
parameters based purely on their physical interpretation:

1. The utility of physical meaning in parameter selection is largely confined to
specific parameter combinations. As an illustrative example, there isn’t an evident
correlation between the noise parameter σ and damping factor ρ that could be
harnessed for tuning purposes.

2. While physical interpretations can be insightful, the overall complexity of the
inference algorithm often surpasses what can be inferred from mere intuition. While
these insights may inform parameter choices for better motion representation or
improved tracking, they don’t always translate to optimal destination predictions,
or the other way around. For instance, a model with low noise, indicative of a
straight-line motion, might not accurately represent the actual trajectory of an
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Table 2.1 Linear Gaussian models parameters and overall prediction performance for
95 tracks.

Models Parameter Values Success Rates
ERV ([67]) η = 55, ρ = 15, σ = 3000 62.9%
ERA ([69]) η = 1150, ρ = 320, γ = 29, σ = 1.7× 104 63.4%
BD-CV ([68]) σCV = 650, σD

pos = 1.5, σD
vel = 100 64.4%

BD-CV ([70]) σCV = 650, σD
pos = 1.5, σD

vel = 100 65.4%
BD-CA ([70]) σCA = 9400, σD

pos = 1.5, σD
vel = 50, σD

acc = 1500 68.3%
BD-CV (this chapter) σCV = 650, σD

pos = 1.5, σD
vel = 100 65.2%

BD-CA (this chapter) σCA = 9500, σD
pos = 1.5, σD

vel = 25, σD
acc = 1500 68.3%

‡ For all BD models, p(T |D = i) = Unif(0.1sec, 1.9sec), the number of quadrature points
NT = 30, G̃ = I and σD form the corresponding Σi.

object. However, such a model might be effective in quickly and accurately predicting
the destination.

3. Relying solely on physical meaning may provide an acceptable level of performance.
However, when the goal is to edge out competitors by even marginal performance
increments, as demonstrated in the upcoming results, such an approach is insufficient.
This highlights the importance of the fine-tuning phase or automatic parameter
learning techniques. These methods, not strictly limited by physical insights, assist
in realising the full potential of each algorithm.

Finally, automatic parameter learning offers a structured alternative to manual
tuning. For example, the parameters of OU models may be set based on maximisation
of the likelihood ∏K

k=1 p(y
[k]
1:n|D = i,Ω) for a sample of K typical full pointing finger

trajectories. Here, Ω represents the set of inherent dynamic model parameters (such
as the η, ρ, γ in (2.8) on page 26) that are not induced by a specific destination but
are common to all ND destination-driven models. As the driver/passenger uses the
touch system, the system can refine the applied model parameters from the larger
available dataset(s). However, parameter learning for BD models presents additional
challenges, especially with the uncertainty surrounding arrival time. We leave a more
formal investigation of parameter choice for future work in these models.

2.5.1 Prediction performance with linear Gaussian intent-
driven models

For the 95 pointing tracks covering different levels of perturbations (i.e. Dataset A), the
computationally efficient linear Gaussian models are sufficient to predict the intended
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icon with a high accuracy. In this section, we evaluate all linear Gaussian models
introduced in Section 2.3.1 for this dataset. The parameters for all tested predictors
are listed in Table 2.1. They are chosen in a manual way as described above.

The timely successful prediction over pointing duration is shown in Fig. 2.5.
As expected, all methods generally exhibit an upward trend, i.e. their performance
improves as the the pointing finger-hand approaches the intended endpoint. Specifically,
the ERA model can perform poorly at the beginning period of the pointing motion
(e.g. in the first 30%); however it deliver comparable results thereafter. Combined
with the overall success rate shown in Table 2.1, it can be seen that all examined
models achieve comparable prediction successes. Hence, the predictive touch system
could infer the intended on-display item remarkably early in the pointing-selection
tasks. Nonetheless, it can be noticed from Table 2.1 and Fig. 2.5 that the BD models
achieve better results compared with the Gaussian mean reverting models. Although
the BD-CV model only exhibits a marginal improvement over the ERA, the BD-CA
model shows a clearer superiority compared to Gaussian models, as it outperform all
other competing methods almost all the time in Fig. 2.5. Furthermore, performance of
models whose acceleration is driven by a Wiener process (BD-CA) are also superior
to those constructed merely on target position and velocity (BD-CV). This may be
due to the fact that present accelerations can reflect the movement trend with more
details. Additionally, the advantage of BD methods may be gained from more accurate
end state construction such that a successful prediction can always be achieved at the
end of pointing period. It is worth mentioning that in our case the intent predictors
implemented according to Algorithm 1 of [70] have the lowest complexity compared
with other BD counterparts (please refer to the final paragraph of Section 2.4.1.2
for a comprehensive discussion on the computational complexity of BD methods).
Meanwhile, the OU-based predictors have the least computational cost among all
evaluated methods.

Note that for better visualisation we have chosen to only display the success rate
against gesture time for the BD method proposed in this chapter in Fig. 2.5, because
the lines from previous BD formulations are visually very similar to that introduced
here. Also, different BD methods in Table 2.1, when the same original Markov model is
incorporated, have similar performance. This similarity is expected given that all BD
methods share a foundational rationale: the construction of a Markov bridge towards
an intended endpoint by integrating knowledge of the destination/terminal state into a
standard Markov process. To reiterate, our primary objectives in presenting the BD
model transition in Section 2.3.1.2 and introducing its inference procedure in Algorithm
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Fig. 2.5 Average successful prediction over time (Dataset A).

1 are not to supersede other BD variants [68, 70] in terms of accuracy or efficiency.
Instead, we aim to provide a clear stochastic process interpretation for the BD model
and a more intuitive destination prediction methodologies. A detailed elaboration on
this perspective is provided in Section 2.1.2. Nevertheless, an important contribution of
this chapter is the exploration of the untested BD-CA model. When implemented using
either Algorithm 1 or previous BD methods from [68, 70], this model demonstrates
superior destination prediction accuracy.

2.5.2 Highly perturbed scenarios and particle filtering

The intent inference performance for highly perturbed trajectories in Dataset B has been
tested with jump models and Gaussian mean reverting models in [69] and [86]. Results
from the BD models introduced in this chapter are also included for comparison. The
aggregate inference success for all algorithms and the timely successful prediction from
four selected algorithms (i.e. omitting non-BD models for the clarity of presentation)
are depicted in Fig. 2.6 and Fig. 2.7, respectively. The applied jump models below are
described in Algorithm 2 and each use 2000 particles, but it has been observed that a
comparable performance can be achieved with a small number (e.g. 500) of particles;
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Table 2.2 Jump models parameter sets.

Models Mean-reverting dynamics Jumps
Jump-ERV η = 60, ρ = 15, σ = 450 µJ = 0, σJ = 866, λ−1

J = 1
Jump-ERA η = 1150, ρ = 320, γ = 30, σ = 8000 µJ = 0, σJ = 1.6× 104, λ−1

J = 0.2

their parameters are listed in Table 2.2 (the jumps are assumed to be isotropic) and
those for all of the linear Gaussian models remain the same as in Table 2.1.

Fig. 2.6 Average success rate for dataset B. ERV was first proposed in [67]. ERA,
jump-ERV, and jump-ERA are all introduced in this chapter, with further details
available in [69]. BD-CA is implemented and reported here for the first time. While
both BD-CV and BD-CA are implemented using Algorithm 1 introduced in this chapter,
comparable success rates can be attained using prior BD formulations as presented
in [68, 70]. The BD-CA distinctly surpasses other methods, demonstrating a marked
improvement in success rate.

From Fig. 2.7, one can see that the BD-CA model always achieves the highest
successful prediction after the first 20 percents duration, and the BD models can always
achieve the accurate prediction at the end stage of pointing due to its Markov bridge
nature. Similar to the linear Gaussian ERA model, the jump-ERA model ascends from
a relatively low successful prediction, to a comparable successful rate on the second
half of the pointing duration. This insensitivity may be caused by a longer reflection
on the observation from the acceleration constructed intention.

The average success rate in Fig. 2.6 indicates that the BD-CA model notably
outperforms its counterparts for this dataset, while the jump-ERV model achieves the
second best success rate. This superiority of the BD-CA model is further illustrated in
Fig. 2.7, where it consistently maintains a robust success rate of 70% starting from
just 35% of the overall pointing duration. This suggests that the BD-CA model can
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Fig. 2.7 Average successful prediction over time (Dataset B).

facilitate swift and accurate decisions regarding the destination. It’s worth noting
that while the sub-57% average success rates for all models in Fig. 2.6 might initially
appear underwhelming, they are quite good, especially when considering the challenges
posed by perturbed pointing data with a vast selection of 37 icons. Importantly, by
the 60% mark in the pointing duration — a reasonable juncture to relay predicted
destinations for better reliability — all models in Fig. 2.7 archive comparable accuracy
levels observed in static-pointing scenarios with only 21 selectable icons, as depicted in
Fig. 2.5. This prediction success rate far surpasses a mere random guess, which stands
at approximately 2.7%. Additionally, even the least effective model, the ERV, has
shown in [67] to outperform more traditional predictors, like the nearest-neighbor-based
methods.

The results illustrated above may lead to the conclusion that the BD-CA is the best
among other models on characterising the intention of the hand pointing. However,
it is worthwhile to note that the exploration for the parameters of jump models
are more restrictive due to their larger number of parameters and time-consuming
evaluation process. Thus it is possible that a better results can be achieved with other
parameters for jump models, especially for the jump-ERA model. Additionally, the
present jumps/jolts in those 10 tracks might not be of the severity (magnitude and/or
transience) that a BD-CA model cannot successfully smooth out or follow. Under such
high-levels of perturbations, the numerical marginalisation of arrival time with BDs can
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be challenging as the pointing-task duration can be subject to large delays, with the
risk of it being very distinctive from the prior of T . Nevertheless, the use of the particle
filtering with a jump process offers additional advantages, not necessarily relevant to
the predictive touch usecase, such as detecting the location-time of the perturbations-
induced fast manoeuvres (jumps) and potentially better destination-aware tracking
results, see [69].

2.6 Conclusion

In this chapter, we presented an overview of the existing stochastic dynamic modelling
methods for destination inference, with the in-vehicle predictive touch system as the
case study. It covers linear Gaussian and nonlinear setups, both proposed within a
Bayesian framework. The adopted continuous time intent-driven state space models
naturally facilitate treating asynchronous data, including from multiple sensors. In
addition, a new bridging distribution approach was proposed here, which has a moderate
computational requirement and a clear stochastic interpretation compared with previous
formulations. Results from real data of a predictive touch system demonstrated the
efficacy of the various considered prediction algorithms, namely their ability to infer
the user intent remarkably early in the pointing-selection task. Thereby, this can
facilitate effective touchless interactions via the intuitive free hand pointing gestures.
It is emphasised that the presented prediction techniques are also applicable to other
fields, e.g. surveillance, smart navigation, robotics, etc. Nevertheless, there are several
extensions to this work, for example bridging distributions for non-linear and/or non-
Gaussian systems (e.g. a stable Lévy system in [91]), considering intrinsically nonlinear
intent-driven motion models for highly manoeuvrable objects and various measurement
models (one such example can be found in [92]). This chapter serves as an impetus to
further research on meta-level tracking models and inference algorithms.



Chapter 3

Lévy State-space Models for
Tracking and Intent Prediction of
Highly Manoeuvrable Objects

Typically the dynamic models in a tracking application are devised as a random process
in state-space form [10], of which the most commonly used is the linear Gaussian
model (e.g. [93, 10, 68] and many models introduced in previous chapters) owing to
its analytical tractability. However, a Gaussian model assumes a normally distributed
state transition between any time interval, which renders it inappropriate for modelling
of the occasional abrupt changes of the state exhibited during sharp manoeuvring
behaviour. To better characterise such erratic manoeuvring behaviour, this chapter
presents α-stable Lévy state-space models, expressed in continuous time as Lévy
processes. In contrast to conventional (fully) Gaussian formulations, the proposed
models are driven by heavy-tailed α-stable noise and are thus much more able to capture
extreme values/behaviours. The model is designed here for both object tracking and
intent inference applications.

In particular, the model is represented in a conditionally Gaussian series form which
ensures the tractability of the applied inference algorithms. A corresponding estimation
strategy with the Rao-Blackwellised particle filter is then proposed and an efficient
intent inference procedure is introduced. Here, the underlying intent, driving the
target’s long-term behaviour (e.g. reaching its final destination), is modelled as a latent
variable. Real vessel data from maritime surveillance and human computer interactions
(e.g. cursor data from motor-impaired interface users) are utilised to demonstrate the
effectiveness of the proposed approach. It is shown to deliver noticeable improvements
in the tracking and intent prediction performance (whenever relevant) compared with
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a more conventional Gaussian dynamic model. This chapter includes results that have
been previously published in [94]1[95]2.

3.1 Introduction

As demonstrated in Chapter 2, there has been a growing interest in the object tracking
field in inferring, as rapidly as possible, a target’s intent (e.g. its final destination and
future motion patterns) from the available sensor measurements. This aim is motivated
by numerous applications, such as surveillance, sensor management, automation and
robotics. Intent prediction can be considered as a meta-level tracking task [6], whose
objective is to acquire a higher-level understanding of a scene by revealing the underlying
intent driving the target’s long-term behaviour (e.g. to reach an endpoint). This is in
contrast with conventional sensor-level trackers [4, 96], aimed at estimating solely the
object temporal kinematics (e.g. position, velocity, heading, etc.).

Building upon and extending the Bayesian framework for intent prediction presented
in Chapter 2, in this chapter, we address the problem of estimating both the kinematic
state and intent (typically the final destination), especially for highly manoeuvrable
objects using the stable Lévy model. Whilst the unknown endpoint cannot be directly
observed, stochastic models can be devised that capture the influence of intent on
the evolution of the observed target state over time. Constructing representative
dynamic models for fast manoeuvring objects is generally challenging, especially
if intent-driven, since a target trajectory can feature large accelerations and rapid
rotational motions, for example by vehicles for obstacle avoidance, drones, vessels [88],
insects undertaking erratic movements [97, 98], cursor pointing motion of users with
severe motor impairments [90], to list a few. Here, a novel modelling approach for
manoeuvring targets that can incorporate both kinematics and intent is proposed. The
methods are a novel extension of continuous-time Lévy state-space models [18, 21],
driven by heavy-tailed α-stable Lévy processes [99, 100]. These can better characterise
sudden dramatic changes in the state induced by swift target manoeuvres, compared
with the more commonly used Gaussian-driven dynamic model.

If the dynamic noise in a system can be considered as the combination of a large
number independent identically distributed perturbations, it is reasonable to model it
using an α-stable distribution. The generalised central limit theorem [101] supports this
choice, as it suggests that the sum of such perturbations converges under appropriate

1© 2021 IEEE. Reprinted, with permission, from [94]
2© 2020 IEEE. Reprinted, with permission, from [95]
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scaling to a member of the α-stable distribution class. The conventional Gaussian noise
is a special case within this class, and thus the α-stable noise in the proposed Lévy
state-space model serves as a natural and more general extension to handle heavy-tailed
cases. Furthermore, the parameterised skewness and heavy-tailedness of the α-stable
noise offer flexibility for characterising a wide range of system noise [102, 103]. In the
continuous time setup, such an α-stable noise can be considered as the derivative of an
α-stable Lévy process, which shares several useful properties (e.g. self-similarity and
infinite divisibility) with the prevalent Brownian motion. Consequently, the α-stable
process has been studied in various areas (e.g. telecommunications, econometrics, and
signal processing [104–106]) to model extreme events or abrupt changes.

3.1.1 Contributions

The main contribution of this chapter is introducing for the first time a stable Lévy
modelling approach for multidimensional spatial tracking and intent prediction, both
of which are addressed using a Bayesian framework similar to that in Chapter 2.
Detailed derivations of this novel generic formulation, with parameterised α-stable
dynamic noise, are provided. We also show how it can be applied to estimate the
kinematic state and/or destination of a manoeuvring target, presenting several different
example models and inference strategies. Notably, our introduced stable Lévy modelling
and inference framework is highly adaptable, routinely enabling the integration of
numerous established continuous-time dynamic models by substituting traditional
Gaussian-driven noise with α-stable noise, thereby improving manoeuvrability.

From a theoretical perspective, the proposed stable Lévy model is an innovative
extension of the continuous-time Lévy state-space models [21]. While the model in
previous work is driven by a single scalar heavy-tailed α-stable Lévy process, ours
is distinguished by its capability to be driven by multiple isotropic multivariate α-
stable Lévy processes, a feature that makes it particularly suited for spatial tracking
applications. Our model can incorporate the unknown intent of a tracked object using a
mean-reverting term. Furthermore, it is devised with a conditionally Gaussian infinite
series, which extends the series for scalar α-stable processes as described in [21, 107, 100].
While the conditionally Gaussian series structure is theoretically exact, but in practical
applications requires the truncation of the infinite series and suitable approximation
of the residual error terms. Owing to the employed conditionally Gaussian structure,
both of the manoeuvring target kinematic state and intent can be inferred with an
efficient Rao-Blackwellised particle filter [45, 49].
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Additionally, we propose a latent destination model, where an extended latent state
that incorporates destination is constructed. The intent prediction task with such a
model then becomes a by-product of the state estimation (tracking) algorithm, thereby
requiring minimal additional computations. It also allows a dynamically changing or
static intended endpoint, which can be anywhere within the surveyed area and does
not have to be confined to a predefined finite set of possible destinations, unlike prior
work, e.g. in [68] and intent prediction methods introduced in Chapter 2.

Results from real pointing and maritime surveillance data are presented to demon-
strate that the competitive performance of the proposed modelling and inference
approach, in terms of determining the kinematic state and final destination (when
relevant) of a target whose trajectory can exhibit sharp manoeuvres. The utilised
pointing data pertains to users with severe motor-impairment (namely cerebral palsy)
pointing in 2-D on an interface with a mouse cursor and participants in a moving
vehicle undertaking freehand pointing gestures in 3-D to select icons on the in-car
display whilst experiencing severe perturbations due to the road/driving conditions
(i.e. vibrations and accelerations). It is emphasised that the proposed stable Lévy
models are also readily applicable for manoeuvring object tracking, i.e. without intent
prediction, as in the reported maritime vessel tracking example in Section 3.6.3.

3.1.2 Outline

The remainder of the chapter is organised as follows: We first list the contributions
in this chapter before reviewing several related works. The proposed stable Lévy
modelling framework is described in Section 3.2 where exact and truncated series
representations of the α-stable Lévy integral are provided. Section 3.3 then details the
multidimensional state-space form of the stable Lévy model, with example models in
Section 3.4. The inference algorithms for estimating the target state and intent are
defined in Section 3.5. Results from real data of various scenarios are shown in Section
3.6 and conclusions are drawn in Section 3.7.

3.1.3 Related work

Whilst the widely adopted linear Gaussian state-space model with additive Gaussian
noise [10] for sensor or meta-level tracking produces simple closed form inference
methods [93, 73, 68], they cannot accurately characterise abrupt changes in the target
(kinematic) state caused by sudden manoeuvres. The Gaussian premise stipulates that
such drastic changes are very unlikely, producing large estimation errors when they
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occur. More sophisticated models, which include a jump process in addition to the
original Gaussian process such as the jump diffusion models or Markov/semi-Markov
jump models, show improved inference results for manoeuvring targets [108, 69]. In
contrast, we utilise in this chapter an α-stable Lévy process as the driving noise, which
consists of fewer parameters and leads to competitive inference performance. Other
manoeuvring models, e.g. the constant turn [4] and intrinsic coordinates [88] models,
rely on the object’s speed and/or heading information. Whilst these are more fitting
for curvilinear motion modelling, the model introduced in this chapter is formulated in
Cartesian coordinates with the aim of straightforward application to diverse tracking
scenarios.

Despite their ability to capture highly manoeuvring behaviour through extreme
changes in latent state values, stable Lévy models are usually highly intractable for
inference due to the lack of a closed-form density function for the increments of the
process. This has resulted in their limited use in the object tracking field, though see
[109] for a discrete time tracking model that uses stable law innovations to achieve
modelling of fast manoeuvres. To overcome this, a conditionally Gaussian Poisson
series representation was introduced in [110–113] to represent the α-stable random
variable and its stochastic integral, which can form the basis of a tractable inference
framework for the stable Lévy process family [113, 107]. Sharp rates of convergence for
these approaches have been recently proposed, see [114] and references therein. A more
general Lévy state-space model was detailed in [21], however not as a spatial process
applicable to object tracking. Here, we propose for the first time multidimensional
Lévy state-space models in the conditionally Gaussian series form for spatial tracking
and intent prediction, coupled with an efficient sequential Bayesian inference procedure
based on Rao-Blackwellised particle filtering. On account of the typically isotropic
properties in most tracking applications, we focus particularly on the symmetric stable
Lévy process. Although skewed dynamic models may be appropriate in certain scenarios
and can be included in our framework as in [21], we leave this as a topic for future
work.

As a further motivation for our work, there is a growing interest in the application
of non-Gaussian Lévy processes for animal behaviour modelling such as the ‘Lévy flight’
and ‘Lévy walk’ models [115]. In these approaches the searching or foraging patterns
of various species (e.g. fruit fly, albatross, bumblebee, etc.) can be approximated
as a heavy-tailed Lévy process, where occasional long distance steps in foraging
animal trajectories correspond to the extreme noise in the Lévy process, see [116–118].
Nonetheless, this is often applied only informally for (hypothesis) validation purposes
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and not within a rigorous tracking formulation. For example, the ‘Lévy flight’ and ‘Lévy
walk’ models in the biology field include only spatial position as a random variable,
and this is usually time-discretised for ease of implementation. This renders them
inappropriate for tracking with frequent (asynchronous) observations, in which the
estimation of higher order kinematics such as velocity can provide valuable information,
enhance accuracy, and potentially lead to deeper understanding of animal dynamics
and the hypotheses that may apply. We note that our proposed modelling and inference
frameworks can be readily applied to these animal tracking scenarios, including agile
animals, such as fruit flies or bumblebees [97, 98]. In particular, fruit flies can change
their direction by roughly 90 degrees in just about 50 ms [98]. This tracking task will
be studied in future work.

Finally, model-based intent predictors can be decoupled from the sensor-level tracker
for computational efficiency or due to system requirements, e.g. legacy algorithms
or system architectures (see [70, 6]). Alternatively, the intent information can be
directly incorporated into the target dynamic model, with potentially simplified meta-
level tracker and more accurate target state estimation. If determining the object
endpoint is sought, the latter intent-driven models are usually destination-reverting
such as the linear Gaussian models based on Ornstein-Uhlenbeck process [73, 67],
bridging distributions [68, 70] or conditionally Markov process/reciprocal process
[76, 75, 6], and jump diffusion models [69]. Another modelling approach, which can
also detect anomalous trajectories or rendezvousing, employs context-free grammars
[6, 75, 119]. It discretises the state space where the target movements are assumed to
be constrained (e.g. confined to a road map). Here, we tackle the intent inference task
for manoeuvring objects or perturbed trajectories with stable Lévy state space models,
capitalising on their heavy-tailed property to capture abrupt changes in the target
motion, involving no discretisation of the state space or constraints on the object path.
We also present a more computationally efficient inference strategy compared with
[67–70] by modelling intent within an extended dynamical state that is inferred as part
of the tracking algorithm. This allows for a fixed computational cost, unlike previous
methods where the cost increased linearly with the number of potential destinations.
With the introduced latent destination models, the intended endpoint can be any
spatial point/region within a surveyed area, i.e. not necessarily one of a finite set of
predefined destinations as in [67–70, 91].
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3.2 Stable Lévy modelling framework

We define a latent dynamical state in the spatial domain,

x(t) = [x1(t)⊤,x2(t)⊤, ...,xm(t)⊤]⊤, (3.1)

where xj(t) ∈ Rsj , j = 1, 2, ...,m, is the vector of the sj hidden variables (e.g. position
and velocity of an object) in the jth spatial dimension, and m is the number of
considered dimensions (e.g. m = 2 for planar and m = 3 for 3-D motion). Specific
forms for xj(t) are given in Section 3.4. The stable Lévy model is formulated as a
continuous-time linear system driven by multivariate isotropic α-stable noise.

For the canonical case, where there is only one multivariate isotropic noise on Rm,
the proposed stable Lévy model can be described by the following stochastic differential
equation (SDE),

dx(t) = Ax(t)dt+ Bdt+ HdW (t), (3.2)

where B is a known input vector, e.g. serves as input in a mean reverting model
[73, 68, 69], and,

A = diag(a1, ...,am), B = [b⊤
1 , b

⊤
2 , ..., b

⊤
m]⊤, H =


h1 0 . . . 0
0 h2 . . . 0
... ... . . . ...
0 0 . . . hm

 , (3.3)

such that aj ∈ Rsj×sj , bj ∈ Rsj and hj ∈ Rsj characterise the transition function for
the jth dimension. W (t) is the isotropic multivariate α-stable Lévy process on Rm

[100] which implies:

1. W (0) = 0 almost surely3,

2. Independent, isotropic stationary increments W (t)−W (s), t > s, having charac-
teristic function

ϕ(θ) = E[eiθ(W (t)−W (s))] = e−σα(t−s)|θ|α , (3.4)
3In probability theory, an event is said to happen almost surely if it happens with probability 1

(or Lebesgue measure 1).
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where α is the stability parameter on (0, 2] and σ is the scale parameter. A special case
is when α = 2, and then W (t) is the m-dimensional isotropic Brownian motion. We
focus in this paper on stable Lévy models with isotropic noise, as is common in much of
the tracking literature [10, 96, 4]; however we note that the more general skewed case
in [21] could also be extended to the current multidimensional setting in future work.
The isotropic premise supports the typical lack of information about directionality of
the randomness of dynamics in a tracking scenario.

The solution of the SDE in (3.2) can be written as [100]

x(t+ ∆t) =eA∆tx(t) +
∫ ∆t

0
eA(∆t−u)Bdu+

∫ ∆t

0
eA(∆t−u)HdW (u). (3.5)

The first two terms are familiar from the solution of standard Brownian-driven models.
The third term is a stable stochastic integral and requires special attention, see later
development. The block-diagonal structure of the model matrices H and A in (3.3) is
familiar from the structure of standard coordinate-uncoupled Gaussian models [10].
In the stable case however, the coordinates become coupled through certain latent
random variables and are thus not treated independently of one another.

A more general stable Lévy system may be driven by multiple independent isotropic
noises, i.e.

dx(t) = Ax(t)dt+ Bdt+
NW∑
k=1

HkdWk(t), (3.6)

where the Wk(t), k = 1, 2, ..., NW , are isotropic α-stable processes independent of each
other and NW is the number of such processes; Wk(t) can be of arbitrary dimension
and will be mapped to the desired coordinate by Hk. Such a SDE can describe the
dynamics in more diverse scenarios, such as multiple interacting targets or single target
with a linear combination of noise sources. The block definition for x(t),A and B

remain the same and their specific elements should be defined as required. e.g. for
multi-targets scenario, xj should include kinematics from different objects, aj should
specify their interactions, and each Wk(t) for each object. A specific example of such
a system will be given in Section 3.3.2. Similar to (3.5), the solution of this SDE is

x(t+ ∆t) =eA∆tx(t) +
∫ ∆t

0
eA(∆t−u)Bdu+

NW∑
k=1

∫ ∆t

0
eA(∆t−u)HkdWk(u). (3.7)

It can be noted from (3.5) and (3.7) that the only term that cannot be calculated
explicitly in each case is the final α-stable stochastic integral. Without loss of generality,
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we consider this integral with respect to a W (t) on Rm (it can be a Wk(t) in (3.7)
with m of the appropriate size), and correspondingly define

I(∆t) =
∫ ∆t

0
f(∆t, u)dW (u), (3.8)

with
f(∆t, u) = eA(∆t−u)H .

We next introduce the following two representations for this intractable integral: A)
an exact Poisson series representation, which is in terms of an infinite series, and B) a
truncated series representation, which approximates the exact representation accurately
and is then utilised to devise tractable stable Lévy models in Sections 3.3 and 3.4.

3.2.1 Exact series representation of the α-stable Lévy integral

With a direct multivariate extension of the Poisson series representation in [100, 21],
the stochastic integral in (3.8) can be exactly expressed as

I(∆t) D= ∆t1/α
∞∑

i=1
Γ−1/α

i f(∆t, Vi)Ui, (3.9)

where D= denotes both sides having the same distribution,

• {Γi} are the unit rate Poisson process arrival times (epochs), i.e. (Γi+1 − Γi) ∼
exp(1) and exp(1) is an exponential distribution with mean 1;

• {Vi} are independent and identically distributed (i.i.d.) random variables uni-
formly distributed in (0,∆t], and

• {Ui} are any i.i.d. isotropic random vectors with finite α-th moment. Here, we
choose to use Ui ∼ N (0, σ2

W Im), where Im ∈ Rm×m is the identity matrix, to
construct a conditionally Gaussian form of I(∆t) for tractable inference.

In a typical single object tracking setup where aj,hj in (3.3) are constants across differ-
ent dimensions j, this series (3.9) represents an isotropic random variable. Nonetheless,
the non-isotropic case can be easily included through a non-zero mean term and
non-diagonal covariance matrix for {Ui}, For discussion of this case, including certain
required compensation terms, see [21] and references therein.
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3.2.2 Truncated series representation

Note that the above series representation, although exact in terms of the distribution
of I(∆t), has an infinite number of terms. For practical implementation we introduce
a truncated series representation to approximate (3.9). Observe from (3.9) that the
Poisson terms {Γ−1/α

i }∞
i=1 are strictly decreasing with i, and hence a reasonable approach

is to perform a random truncation of the series at some value of i. Noting that the
scale of series increases with ∆t, we propose the truncation {i : Γi < c∆t}, c ∈ (0,∞),
as in [21], and the expected number of terms in the truncated series thus grows linearly
with the time interval ∆t. Accordingly, the truncated series can be expressed as

Ic(∆t) =∆t1/α
∑

Γi<c∆t

Γ−1/α
i f(∆t, Vi)Ui. (3.10)

To compensate for the error due to the series truncation in (3.10), we introduce
an approximation to the resulting residual error series. Such a residual series can be
expressed as

Rc(∆t) =I(∆t)− Ic(∆t)
=∆t1/α

∑
Γi≥c∆t

Γ−1/α
i f(∆t, Vi)Ui. (3.11)

To characterise this residual series, we compute its first and second moments. Since
{Ui} have zero mean and are independent from the other variables, its mean is given
by

E[Rc(∆t)] =E[EUi
[Rc(∆t)]]

=E[∆t1/α
∑

Γi≥c∆t

Γ−1/α
i f(∆t, Vi)EUi

[Ui]] = 0.

The detailed derivation of the variance of the residual terms is in Appendix 3.A. This
derivation follows largely from Section 8.2.1 of [120], with a notable adjustment being
the use of our multivariate variables Ui instead of scalar variables.

Specifically, we have

Var[Rc(∆t)] = σ2
W

α

2− αc
1− 2

α Q(∆t),

Q(∆t) =
∫ ∆t

0
eA(∆t−u)HH⊤eA(∆t−u)⊤

du. (3.12)
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Consequently, we can approximate this residual series with a Gaussian variable which
exactly matches the first and second moments of Rc(∆t), similarly to the procedure in
[21], i.e.

R̃c(∆t) ∼ N
(

0, σ2
W

α

2− αc
1− 2

α Q(∆t)
)
, (3.13)

The fully truncated version for the isotropic stable Lévy integral is then conditionally
Gaussian and expressed as

I(∆t) ≈ Ic(∆t) + R̃c(∆t). (3.14)

This accurate Gaussian approximation can be justified for large c by central limit
theorem on Rc(∆t), see [21, 121, 114] and in particular the sharp convergence bounds
for the symmetric scalar case reported in [114].

3.3 Stable Lévy state space model

The state-space form of the stable Lévy model can now be developed based on the
truncated Poisson series representation in (3.14). For notational convenience, we define

F (∆t) = eA∆t,

M(∆t) =
∫ ∆t

0
eA(∆t−u)Bdu.

(3.15)

Recall that our stable Lévy model can be driven by one or multiple α-stable noise(s)
as specified in the SDEs in (3.2) and (3.6). Here, we first formulate the state-space
form of the canonical single noise case described by (3.2). The multiple noises setting
in (3.6) can then be similarly obtained by simply summing the multiple truncated
series representations. However, in the example presented in this chapter we will use a
special-case multiple noises scenario where it consists of a non-Gaussian α-stable noise
and a Gaussian noise, both on Rm.
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3.3.1 Model driven by a single α-stable noise source

The stable Lévy model with a single α-stable noise has the SDE solution in (3.5).
Substituting the series representations in (3.14) into (3.5) yields

x(t+ ∆t)

=eA∆tx(t) +
∫ ∆t

0
eA(∆t−u)Bdu+

∫ ∆t

0
eA(∆t−u)HdW (u)

≈F (∆t)x(t) + M(∆t) + Ic(∆t) + R̃c(∆t). (3.16)

Note that given all the required {Γi}(0,c∆t] and {Vi}(0,∆t], Ic(∆t) in (3.10) is the
summation of independent Gaussian vectors with zero mean and covariance being
∆t2/αΓ−2/α

i σ2
W f(∆t, Vi)f(∆t, Vi)⊤, and thus Ic(∆t) follows a conditionally normal dis-

tribution, that is

p(Ic(∆t)|{Γi, Vi}c
∆t) = N

0,∆t2/ασ2
W

∑
Γi<c∆t

Γ−2/α
i f(∆t, Vi)f(∆t, Vi)⊤

 , (3.17)

where we define
{Γi, Vi}c

∆t = {{Γi}(0,c∆t], {Vi}(0,∆t]}.

Since the residual approximation R̃c(∆t) is another independent Gaussian vector as
given in (3.13), the transition density for the α-stable Lévy state-space model can be
computed according to (3.16) as

p(x(t+ ∆t)|x(t), {Γi, Vi}c
∆t) = N (F (∆t)x(t) + M(∆t),S(∆t)),

where

S(∆t) =∆t2/ασ2
W

∑
Γi<c∆t

Γ−2/α
i f(∆t, Vi)f(∆t, Vi)⊤ + σ2

W

α

2− αc
1− 2

α Q(∆t). (3.18)

The mean of this transition density, i.e. F (∆t)x(t) + M(∆t), reflects the overall
motion trend of the target. By adjusting the parameters A and B in the SDE in
(3.2), this model covers a wide range of linear dynamics for diverse applications, e.g.
mean-reverting for intent inference or a constant velocity/acceleration behaviour for
tracking. The noise parameters α and σW characterise the manoeuvrability (small α
for more heavy-tailed) and scaling, respectively. As this model is driven by a single
α-stable noise, it is suitable for a single manoeuvring object, for both tracking and
intent inference applications. Examples can be found in Section 3.4.
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3.3.2 Model driven by both non-Gaussian α-stable and Gaus-
sian noises

The focus here is on multiple α-stable noises in (3.6), in particular two noises on Rm

such that one is with 0 < α < 2 and the other has α = 2 (i.e. Gaussian). Since the
Gaussian stochastic integral has well-known closed-form solution, we only employ the
Poisson series representations for the non-Gaussian integral. Specifically, the SDE in
(3.6) reduces to

dx(t) = Ax(t)dt+ Bdt+ HdW (t) + Gdβ(t), (3.19)

where β(t) is the isotropic Brownian motion on Rm, with the covariance matrix σ2
BIm;

G has a block-diagonal structure similar to H , i.e.

G =


g1 0 . . . 0
0 g2 . . . 0
... ... . . . ...
0 0 . . . gm

 , (3.20)

such that gj ∈ Rsj , with j = 1, 2, ...,m, maps the j-th scalar components of β(t) to
the desired latent variables in the j-th dimension. The stable Lévy state-space model
for this setup is

x(t+ ∆t) ≈F (∆t)x(t) + M(∆t) + Ic(∆t) + R̃c(∆t) +
∫ ∆t

0
eA(∆t−u)Gdβ(u). (3.21)

We still have the conditionally Gaussian form of Ic(∆t) as (3.17), and the following
transition density can thus be attained

p(x(t+ ∆t)|x(t), {Γi, Vi}c
∆t) = N (F (∆t)x(t) + M(∆t),S(∆t)),

where

S(∆t) =∆t2/ασ2
W

∑
Γi<c∆t

Γ−2/α
i f(∆t, Vi)f(∆t, Vi)⊤

+ σ2
W

α

2− αc
1− 2

α Q(∆t) + σ2
BΩ(∆t), (3.22)

Ω(∆t) =
∫ ∆t

0
eA(∆t−u)GG⊤eA(∆t−u)⊤

du. (3.23)
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A special case for this model is when σB = 0, i.e. the covariance matrix for Brownian
motion β(t) is zero or negligible, the model reduces to the single α-stable noise driven
case in the Section 3.3.1. Typically, this additional Brownian motion aims to provide
Gaussian randomness for multiple target dynamics modelling. Alternatively, it can, as
well as the α-stable noise, apply to the same object. One example of this model for
intent inference application is detailed in Section 3.4.2.

3.4 Model examples

In this section, we give concrete examples of models within the stable Lévy state space
framework as defined in Section 3.3. Due to the large number of models considered
below, we do not provide their explicit discrete form, instead we introduce the general
schemes to compute the required terms M(∆t),Q(∆t), and Ω(∆t). These schemes
are based on the assumption that the matrix exponential can be computed easily and
accurately; hence by such an assumption F (∆t) in (3.15) is already easily calculated.

Let the square matrix A have dimension sA × sA, i.e. sA = ∑m
j=1 sj . We start with

the simpler integral M (∆t) in (3.15). It can be noticed that if A is invertible, we have
a straightforward expression

M (∆t) = A−1(eA∆t − IsA
)B. (3.24)

Here, I propose a method to compute M (∆t) regardless of the structure of A (including
the singular case) such that

M (∆t) =JMB,JM

IsA

 =expm
 A IsA

0sA
0sA

∆t
0sA

IsA

 , (3.25)

where expm(·) computes the matrix exponential. The derivation of (3.25) is in Appendix
3.B. This approach is inspired by the matrix fraction decomposition technique, which
was utilised for solving matrix Riccati differential equation in [122] and in [96] to
compute the Gaussian covariance matrix. The latter matrix has the same form as
Q(∆t) and Ω(∆t) in our model. The scheme in [96] is used to to compute Q(∆t),
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leading to

Q(∆t) =JQK−1
QJQ

KQ

 =expm
 A HH⊤

0sA
−A⊤

∆t
0sA

IsA

 (3.26)

see [96] for the proof. Note that the Ω(∆t) in (3.23) only differs from the Q(∆t) in
(3.12) by the mapping matrix, thus we only need to replace H in (3.26) with G to
obtain the Ω(∆t).

However, we stress that in the case that these matrix exponentials cannot be
computed, an explicit expression of M (∆t),Q(∆t), and Ω(∆t) should be sought; this
can be potentially simplified by the block-diagonal structure of A, H and G. For
instance, with Q(∆t) the integral can be expanded as a block diagonal matrix with m
integrals, i.e.

Q(∆t) = diag(q1, q2, ..., qm), (3.27)

where qj =
∫∆t

0 eaj(∆t−u)hjh
⊤
j e

aj(∆t−u)⊤
du, with j = 1, 2, ...m, is the integral on Rsj×sj

and thereby, we only require the explicit form of qj ; this can be found in the literature
for some of the models discussed below, e.g. for Singer model in [93] and Langevin
model in [21].

Next, we present four examples of the proposed stable Lévy modelling approach.
They are divided into two classes, those for manoeuvring object (sensor-level) tracking
in Section 3.4.1 and intent inference in Section 3.4.2. They all have isotropic linear
setup such that the parameters aj and hj in (3.3) as well as gj in (3.20) are constants
across the different dimensions j, j = 1, 2, ...,m. The j-th dimensional target state xj

also incorporates the same kind of kinematics for different dimensions. For notational
brevity, we further define xj as the position in the j-th dimension, ẋj as its first
derivative (i.e. velocity) and ẍj is the second derivative of xj (i.e. acceleration). While
we present just four examplar model structures, it should be emphasised that any other
linear state space models in continuous time can be adapted to the Lévy state space
setting.

3.4.1 Models for manoeuvring object tracking

Below, we consider two models for sensor-level tracking, both are driven by a single
noise model as in Section 3.3.1.
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Table 3.1 Summary of the parameters in the SDEs (3.2) for Langevin, Singer and
equilibrium reverting velocity (ERV) models and (3.19) for the latent destination model,
j = 1, 2, ...,m.

Models xj aj bj hj gj

Langevin
[
xj

ẋj

] [
0 1
0 −λ

]
0

[
0
1

]
N/A

Singer

xj

ẋj

ẍj


0 1 0
0 0 1
0 0 −λ

 0

0
0
1

 N/A

ERV
[
xj

ẋj

] [
0 1
−η −ρ

]
η

[
0
pj

] [
0
1

]
N/A

Latent destination

xj

ẋj

lj


 0 1 0
−η −ρ η
0 0 0

 0

0
1
0


0
0
1



3.4.1.1 Stable Lévy Langevin model

This replaces the Brownian motion in the original Langevin dynamics with the isotropic
stable Lévy motion. It can be described by the SDE in (3.2), with the parameters
listed in Table 3.1. Such parameters correspond to a SDE for the object speed of the
j-th spatial dimension according to

dẋj(t) = −λẋj(t)dt+ dWj(t), (3.28)

where λ is the positive friction constant and Wj(t) is the j-th component of W (t). This
SDE describes ẋj(t) as the Lévy Ornstein-Uhlenbeck process with the mean term 0;
hence a target governed by this SDE always tends to slow down despite the fluctuations
induced by the Lévy stable noise. It is noted that when the stable noise does not exhibit
extreme values, the object displays small non-directional movements since the velocity
is near zero. The trajectory is more likely to cluster in a small region during these
periods. However, a large velocity can be generated due to an extreme noise value(s)
producing a target motion along a straight-line, albeit the velocity decaying gradually,
see Fig. 3.1 for example synthetic tracks. Hence, the target occasionally moves fast
to other spatial regions, which can capture the efficient foraging/searching pattern of
animals. Consequently, this Langevin model is expected to be able to model irregular
manoeuvres of highly volatile objects, e.g. animals or insects [97, 116–118, 98].
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(a) α = 0.8 (b) α = 1.4

(c) α = 1.7 (d) α = 2 (Gaussian case)

Fig. 3.1 Synthetic data generated with the planar Langevin model.

Here we present several synthetic tracks generated by the planar stable Lévy
Langevin model to showcase its potential in modelling the irregular manoeuvres of
highly volatile objects. Specifically, Fig. 3.1 presents the synthetic data (generated
and visualised using MATLAB) from the planar Langevin model with different tail
parameters α. The four sub-figures are generated using the same time length and the
same parameters with the only exception of α. In particular, we simulate 10000 time
steps with λ = 0.0145, σW = 0.033, c = 20, and time interval 1. Here, a small value of
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λ is used to ensure slower velocity decay following a heavy-tailed noise disturbance,
providing ample data points to capture the resulting near-straight trajectory. Note
that the labels on the axis are omitted to avoid any misunderstanding caused by
different scale parameters. It can be seen from Fig. 3.1 that the sharp manoeuvres
(presented as straight lines) dominate other small movements when α = 0.8. However,
the manoeuvres are less frequent and smaller as α becomes larger. Ultimately, in the
Gaussian case (i.e. α = 2), the generated path is relatively rougher and no distinctive
manoeuvres can be seen. These examples demonstrate the flexibility of Lévy Langevin
model for manoeuvring behaviours modelling through different choices of α.

In a special case of λ = 0, the parameter setting of the Langevin model becomes
that of the constant velocity model, which is widely adopted in the object tracking
field. In this case, our stable Lévy formulation introduces a heavy-tailed noise in this
canonical (and in a sense non-manoeuvring [10]) dynamical model to characterise the
abrupt state change induced by manoeuvres.

3.4.1.2 Stable Lévy Singer model

This model is based on the well-known Gaussian Singer dynamic model in [93] for
manoeuvring object tracking. Here we replace the Gaussian noise with an α-stable
noise for more flexibility in representing increased object manoeuvrability. It follows
the SDE in (3.2) on page 59 and its parameters are listed in Table 3.1. This extends
the previous Langevin model to a higher order kinematics and its acceleration follows
the Lévy Ornstein-Uhlenbeck process with mean term 0. Its j-th dimensional SDE is

dẍj(t) = −λẍj(t)dt+ dWj(t). (3.29)

The manoeuvres are introduced in this model by the non-zero acceleration and the
positive parameter λ characterises the reversion ability from undertaking manoeuvring
movements. For instance, a small λ is for a slower decaying of the manoeuvring action,
i.e. the manoeuvring lasts longer. Demonstration of this Singer model for vessel
tracking is presented in the Section 3.6.3. A special case of the stable Lévy Singer
model is when λ = 0, which results in the stable Lévy constant acceleration model,
whose Gaussian noise form is also widely adopted for manoeuvring object tracking.

3.4.2 Models for intent inference

In this section, two models for the meta-level tracking task of destination prediction
are presented.
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3.4.2.1 Stable Lévy equilibrium reverting velocity model

This spatial model is a modified version of the equilibrium reverting velocity (ERV)
model developed in [67] and reviewed in Section 2.3.1.1 on page 24 for 3-D pointing
gesture movements. The single Gaussian noise of the ERV model in [67] is replaced
by a stable Lévy noise to better handle severely perturbed motion. As described in
Section 3.3.1, it is a single noise driven model expressed by the SDE in (3.2). Its
parameters are given in Table 3.1 such that η and ρ are positive reversion and damping
coefficients, respectively. In this version of the model, vector [p1, p2, ..., pm]⊤ denotes
the destination position. The j-th dimensional SDE is

dẋj(t) = η (pj − xj(t)) dt− ρẋj(t)dt+ dWj(t). (3.30)

This SDE describes a target that reverts to the destination’s position [p1, p2, ..., pm]⊤

under the impact of disturbances of a stable Lévy noise. The damping coefficient
ρ ensures that the target speed does not become excessive high during its journey
to/at the endpoint. This spatial stable Lévy ERV model is designed to capture the
dependence of the destination and the target’s movements, and hence it is suitable for
destination-aware tracking and/or intent inference. Example synthetic tracks generated
by this Lévy ERV model for modelling pointing motion will be provided in Section
3.6.2. It is emphasised that any other Ornstein-Uhlenbeck-based destination reverting
models in [69, 67], can be utilised similarly to the ERV, with a stable Lévy dynamic
noise in lieu of their original Gaussian noise.

3.4.2.2 Latent destination model

Unlike the aforementioned ERV model which assumes that the intent/destination is a
fixed (certain) parameter throughout the target journey, here we model the destination
as a latent variable. This hidden endpoint can either be static or dynamic (i.e. follows
a Brownian motion), while the tracked target (i.e. its kinematic state) still reverts
to the latent endpoint with similar dynamic characteristics as the stable Lévy ERV
model. Thereby, this Lévy dynamic/static latent destination model (abbreviated as
DLD/SLD model) belongs to the family of models driven by a stable Lévy noise and
Gaussian noise as in Section 3.3.2, and follows the SDE in (3.19). Its parameters are
defined in Table 3.1, where lj is the position of the intended destination in the j-th
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dimension. The SDE of the motion in the j-th dimension can be written as

dẋj(t) =η (lj(t)− xj(t)) dt− ρẋj(t)dt+ dWj(t),
dlj(t) =dβj(t),

(3.31)

where βj(t) is the j-th component of the isotropic Brownian motion β(t). By modelling
the intent as a Brownian motion, the DLD model allows a change of destination with
a moderate rate. Additionally, by setting the Brownian motion covariance matrix as
zero, i.e. σB = 0, this SDE describes the SLD model, and characterises an object
reverting to a fixed (a priori unknown) destination. However, this SLD model still
allows us to estimate the intent with a Gaussian prior on a potential destination
position. Most importantly, with this novel modelling approach, we can determine the
probability of any point/region within the surveyed area being the target intended
endpoint, unlike the formulations in [68–70] that explicitly assume a finite set of
nominal destinations. Practically, this model serves as the extension of the ERV or
any other similar destination-reverting model to effectively tackle the problem of a
dynamically changing intent or the number of possible destinations is too large. This
is besides the α-stable dynamic noise aspect. We show in Section 3.5.2 that the intent
prediction with this latent destination model is substantially more efficient than the
stable Lévy ERV model.

3.5 Estimation and intent inference

Owing to the conditionally Gaussian structure of the stable Lévy model detailed
above, standard state and parameters estimation procedures for Gaussian models can
be employed within the introduced sequential Monte Carlo framework. Specifically,
an efficient Rao-Blackwellised particle filter can be designed to carry out the state
estimation, with a simple linear Gaussian observation function. Here, we first discuss
computing the likelihoods and posteriors conditioned on the latent variables {Γi, Vi}c,
which will then be utilised in the Rao-Blackwellised particle filter for marginal state
estimation and intent inference application.

Let y(t) be a vector of observations received at time t. We assume that the sensory
observations are available at each of the successive discrete time points tn (n = 1, 2, ...).
Additionally, we define xn = x(tn), yn = y(tn), and {Γi, Vi}c

n:m as all the latent variables
required for state transition from tn to tm (m > n), i.e. {Γi, Vi}c

n:m = ⋃m−1
k=n {Γi, Vi}c

∆tk
,

with ∆tk = tk+1 − tk. Note that for different n, all {Γi, Vi}c
n−1:ns are defined in
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non-overlapping time intervals, and thus they are independent by construction. The
transition density for {Γi, Vi}c can then be simplified as follows,

p({Γi, Vi}c
n−1:n|{Γi, Vi}c

1:n−1) = p({Γi, Vi}c
n−1:n). (3.32)

We aim to calculate the conditional likelihoods and posteriors, e.g. p(xn|{Γi, Vi}c
1:n,y1:n),

in closed forms. In a typical setup where the noise parameter σ2
W is a certain constant,

this requires the following observation function,

p(yn|xn) = N (yn; Cxn + D,R), (3.33)

where R is the covariance of the observation noise; C and D are parameters defining
the transformation from state to the observations. Consequently, the sought conditional
likelihoods and posteriors can be recursively computed by the standard Kalman filter
with Gaussian priors, i.e.

p(xn|{Γi, Vi}c
1:n,y1:n) = N (xn; µn|n,Pn|n), (3.34)

p(xn|{Γi, Vi}c
1:n,y1:n−1) = N (xn; µn|n−1,Pn|n−1), (3.35)

p(yn|{Γi, Vi}c
1:n,y1:n−1) = N (yn; ŷn|n−1,Σn|n−1), (3.36)

with means and covariances given by

∆t = tn − tn−1,

µn|n−1 = F (∆t)µn−1|n−1 + M(∆t),
Pn|n−1 = F (∆t)Pn−1|n−1F (∆t)⊤ + S(∆t),
ŷn|n−1 = Cµn|n−1 + D,

Σn|n−1 = CPn|n−1C
⊤ + R,

K = Pn|n−1C
⊤Σ−1

n|n−1,

µn|n = µn|n−1 + K(yn − ŷn|n−1),
Pn|n = (IsA

−KC)Pn|n−1,

(3.37)

where S(∆t) is defined in (3.18) on page 64 for single noise driven model and in (3.22)
on page 65 for non-Gaussian α-stable and Gaussian noises driven case. It should be
noted that without the linear Gaussian observation function in (3.33), the closed form
results in (3.34)-(3.36) will be lost and one may have to sample both the state x as
well as the latent variables {Γi, Vi} in the particle filtering for state estimation.
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Furthermore, it is possible to jointly and explicitly estimate the noise parameter
σ2

W and the state conditioned on the latent variables, i.e. p(σ2
W ,xn|{Γi, Vi}c

1:n,y1:n).
Such a tractable estimation is only valid for the single noise driven stable Lévy models
in Section 3.3.1, and imposes two more assumptions, i.e. R is scaled with σ2

W and the
prior p(σ2

W ) is the inverted gamma distribution. Subsequently, the standard Kalman
filter can still be employed to evaluate the joint posterior in a closed form. Relevant
details of this can be found in [21]. In this chapter, we do not treat such a scenario
and assumes that σ2

W is known.

3.5.1 Rao-Blackwellised particle filtering

Based on the above closed-form conditional densities, the efficient Rao-Blackwellised
particle filter can be used to only sample the intractable latent variables {Γi, Vi}c

and other marginal densities, e.g. p(xn|y1:n), can be estimated within the importance
sampling framework. Therefore, we consider the posterior of {Γi, Vi}c as the particle
filter target distribution, which can be factorised as per,

p({Γi, Vi}c
1:n|y1:n) ∝p({Γi, Vi}c

n−1:n|{Γi, Vi}c
1:n−1)

× p({Γi, Vi}c
1:n−1|y1:n−1)p(yn|{Γi, Vi}c

1:n,y1:n−1), (3.38)

such that the transition for {Γi, Vi}c can be simplified as in (3.32). With NP particles,
then at time tn each particle is a set of latent variables sequence {Γi, Vi}c,(p)

1:n , where p
is the index of particles. We now define the unnormalised importance weight for the
p-th particle as ω(p)

n , i.e.

ω(p)
n = p({Γi, Vi}c,(p)

1:n |y1:n)
q({Γi, Vi}c,(p)

1:n |y1:n)
,

and q is the proposal distribution. Let the self-normalised importance weight be ω∗(p)
n =

ω(p)
n /

∑NP
p=1 ω

(p)
n . Such self-normalised weights offer an empirical Dirac approximation

of the target distribution, i.e.

p({Γi, Vi}c
1:n|y1:n) ≈

NP∑
p=1

ω∗(p)
n δ({Γi, Vi}c,(p)

1:n ). (3.39)
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To update the self-normalised importance weight, we expand it as follows,

ω∗(p)
n ∝ ω(p)

n = p({Γi, Vi}c,(p)
1:n |y1:n)

q({Γi, Vi}c,(p)
1:n |y1:n)

∝ p({Γi, Vi}c,(p)
1:n−1|y1:n−1)

q({Γi, Vi}c,(p)
1:n−1|y1:n−1)

p({Γi, Vi}c,(p)
n−1:n|{Γi, Vi}c,(p)

1:n−1)
q({Γi, Vi}c,(p)

n−1:n|{Γi, Vi}c,(p)
1:n−1,yn)

p(yn|{Γi, Vi}c,(p)
1:n ,y1:n−1)

∝ ω
∗(p)
n−1p(yn|{Γi, Vi}c,(p)

1:n ,y1:n−1), (3.40)

where we choose the target transition density in (3.32) as the proposal, i.e. the bootstrap
particle filter. The sampling scheme for such a proposal is summarised in Algorithm
3. The conditional predictive likelihood in (3.40) can be computed directly using the
Kalman filter steps in (3.36).

Algorithm 3: Sampling scheme for latent variables
1 Output: {Γi, Vi}c

n−1:n.
2 ∆t = tn − tn−1.
3 i = 1, sample Γi ∼ exp(1).
4 while Γi < c∆t do
5 Sample Vi ∼ Uniform(0,∆t).
6 Include Γi and Vi to {Γi, Vi}c

n−1:n.
7 i← i+ 1; sample Γi such that (Γi − Γi−1) ∼ exp(1).
8 end

Consequently, we can recursively estimate the state and the nonlinear latent variables
{Γi, Vi}c in an efficient Rao-Blackwillisation scheme, with each particle updating and
storing the following information: the sample {Γi, Vi}c, normalised weight ω∗, the
conditional state mean µ and the covariance P . This filtering strategy is outlined in
Algorithm 4. With this stored information, the estimation for other marginal densities
can be extracted as required. Specifically,

p(·|y1:n) =
∫
p(·|y1:n, {Γi, Vi}c

1:n)p({Γi, Vi}c
1:n|y1:n)d{Γi, Vi}c

1:n

≈
NP∑
p=1

ω∗(p)
n p(·|y1:n, {Γi, Vi}c,(p)

1:n ), (3.41)

where we substitute (3.39) to obtain the third line. Note that ‘·’ can be any of the
variables which have explicit conditional densities, such as xn as given in (3.34)-(3.36).
For example, the marginal posterior of the target state, which may be required in
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object tracking, can be approximated by (3.41) as,

p(xn|y1:n) ≈
NP∑
p=1

ω∗(p)
n p(xn|y1:n, {Γi, Vi}c,(p)

1:n ), (3.42)

such that the conditional posterior p(xn|y1:n, {Γi, Vi}c,(p)
1:n ) is given in (3.34).

Algorithm 4: Single iteration of particle filtering
1 Input: {Γi, Vi}c,(p)

1:n−1, ω
∗(p)
n−1, and {µ,P }(p)

n−1|n−1.
2 Output: {Γi, Vi}c,(p)

1:n , ω∗(p)
n and {µ,P }(p)

n|n .
3 if Resample then
4 Resample particles and set self-normalised weights ω∗(p)

n−1 = 1/NP .
5 end
6 for particles p = 1 : NP do
7 Sample {Γi, Vi}c,(p)

n−1:n via Algorithm 3, and include it to {Γi, Vi}c,(p)
1:n .

8 Update stored information {µ,P }(p)
n|n via (3.37).

9 Compute the self-normalised weight ω∗(p)
n via (3.40).

10 end

3.5.2 Intent inference

Similar to the previous chapter, the objective here is to sequentially infer the target
intent with recursive Bayesian filtering. For each of the two stable Lévy models in
Section 3.4.2, an inference routine is introduced below with its pseudo-code.

3.5.2.1 Intent inference for stable Lévy ERV model

Since the stable Lévy ERV model is an extension of the Gaussian mean reverting model
introduced in Chapter 2, the intent in this example is modeled as a finite discrete
grid of possible destinations as in Chapter 2. The scenario with infinite number of
destinations will be considered later in Section 3.5.2.2. As a result, the Bayesian intent
inference framework introduced in Section 2.2.2 from the previous chapter can be
directly applied. Specifically, the particle filter is used to estimate the probability of
each destination from the sequentially evolving data. In this section, we briefly describe
the intent inference strategy, with the details and rationale provided in the Section
2.2.2 from the previous chapter.

Let there be a total of ND nominal endpoints, indexed by d = 1, 2, ..., ND. The
position of each endpoint is known and defined by the vector pd = [pd

1, p
d
2, ..., p

d
m]⊤.
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Our objective is to determine the probability of each endpoint being the intended
destination D ∈ {1, 2, ..., ND}. Here the intended destination D is treated as an
underlying parameter of the dynamic model. Subsequently, the goal of destination
prediction can be rephrased as computing the probability of D = d for each nominal
endpoint d = 1, 2, ..., ND. The Bayesian formula allows us to factorise this computation
as follows:

p(D = d|y1:n) ∝ p(y1:n|D = d)p(D = d). (3.43)

The prior p(D = d) is chosen according to the contextual information (e.g. travel
history, preferences, etc.). It can be uniform, i.e. p(D = d) = 1/ND, for all nominal
endpoints d = 1, 2, ..., ND if there is no such information is available. The index of the
most probable destination, in the Maximum a Posteriori sense, is

i = arg max
d=1,2,...,ND

p(D = d|y1:n). (3.44)

The destination likelihood in (3.43) can be recursively evaluated via the prediction
error decomposition (PED) [87],

p(y1:n|D = d) = p(yn|y1:n−1,D = d)p(y1:n−1|D = d). (3.45)

Thus, the key operation is computing the predictive likelihood p(yn|y1:n−1,D = d).
Here we define the destination driven motion model (conditioned on D = d) to be the
stable Lévy ERV model. This is feasible since the model is designed to revert to the
d-th endpoint position pd with the parameters specified in Table 3.1. Thereby, the
sought predictive likelihood can be approximated in a manner analogous to (2.42) from
Chapter 2, using the importance sampling framework [43, 46]

p(yn|y1:n−1,D = d) ≈
NP∑
p=1

ω
∗(p,d)
n−1 p(yn|{Γi, Vi}c,(p,d)

1:n ,y1:n−1,D = d)

=
NP∑
p=1

ω̃(p,d)
n , (3.46)

where the superscript d stipulates that the variable/sample belongs to the d-th desti-
nation conditioned ERV model. In the last step of (3.46) the update weight is defined
by

ω̃(p,d)
n = ω

∗(p,d)
n−1 p(yn|{Γi, Vi}c,(p,d)

1:n ,y1:n−1,D = d). (3.47)
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Since, by definition, the destination information is an implicit condition for a stable
Lévy mean reverting model, the conditional predictive likelihood in (3.47) is in effect
(3.36). Note that ω̃(p,d)

n is also required in the self-normalised weight update equation
(3.40). Subsequently, we have

ω∗(p,d)
n ∝ ω̃(p,d)

n . (3.48)

For ND possible destinations, a total of ND Rao-Blackwellised particle filter filters,
each with a particular destination information, would be required to carry out the
intent inference. By only sampling {Γi, Vi}c once, here all ND particle filters share
the same Lévy noise latent samples. This not only reduces the time for sampling
latent variables, but also for computation of quantities like S(∆t) required in (3.37).
Whereas this sampling and computation were formerly executed for every individual
destination, it is now performed just once, which significantly reduces the computation
time for a large number of destinations. The inference procedure for the stable Lévy
mean reverting model is outlined in Algorithm 5. This pseudo-code only proceeds one
time step from tn−1 to tn up to the current observation yn. More details about this
intent inference strategy can be found in [69] and the previous chapter, where a similar
conditionally Gaussian intent inference framework is presented for jump models.

3.5.2.2 Intent inference for latent destination models

Since the position of the intended destination is modelled as a variable within the
dynamical state (see Table 3.1), the estimated intent can be directly extracted from
the estimated “extended” dynamical state employing (3.41), i.e.

p(ln|y1:n) =p(G⊤xn|y1:n)

≈
NP∑
p=1

ω∗(p)
n p(G⊤xn|y1:n, {Γi, Vi}c,(p)

1:n )

=
NP∑
p=1

ω∗(p)
n N (ln; G⊤µ

(p)
n|n,G

⊤P
(p)
n|nG), (3.49)

where the last line is obtained by substituting the conditional state posterior in (3.34)
and using change of variables for Gaussian vectors. Vector ln denotes the position of
the intent/endpoint at time tn, i.e. ln = [l1(tn), l2(tn), ..., lm(tn)]⊤. The mapping matrix
G is given for the latent destination models in (3.20) as per Table 3.1. The mean
µ

(p)
n|n and covariance P

(p)
n|n, both defined in (3.34), are stored in the particle filter as

described in Algorithm 4. One can see that the estimated intent position is a mixture
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of Gaussian densities, which has support ln ∈ Rm covering the entire area of interest
(e.g. a surveyed region).

The support of the intended destination position can be more restrictive in practice.
For example, consider the intent inference task described above for stable Lévy ERV
model and in the previous chapter, where the target’s destination can only be one of
the ND nominal endpoints. Based on the estimated intent in (3.49), there are then
several ways to decide which nominal endpoint is the intended one. Here, we present
two methods to determine the most probable destination, whose index is denoted by i.
Specifically, the most probable destination is the one that: a) achieves the smallest
Euclidean distance to the mean of the estimated intent, i.e.

i = arg min
d=1,2,...,ND

∥E(ln|y1:n)− pd∥, (3.50)

Algorithm 5: Single iteration (tn−1 to tn) of intent inference with the stable
Lévy ERV model
1 Input: ω∗(p,d)

n−1 , p(y1:n−1|D = d), and {µ,P }(p,d)
n−1|n−1.

2 Output: ω∗(p,d)
n , p(y1:n|D = d), and {µ,P }(p,d)

n|n .
3 for particles p = 1 : NP do
4 Sample {Γi, Vi}c,(p)

n−1:n via Algorithm 3.
5 end
6 for endpoints d = 1 : ND do
7 if Resample then
8 Resample particles and set self-normalised weights ω∗(p,d)

n−1 = 1/NP .
9 end

10 for particles p = 1 : NP do
11 Set {Γi, Vi}c,(p,d)

n−1:n = {Γi, Vi}c,(p)
n−1:n.

12 Update stored information {µ,P }(p,d)
n|n via (3.37).

13 Compute the update weight ω̃(p,d)
n via (3.47).

14 end
15 Compute p(yn|y1:n−1,D = d) according to (3.46).
16 Normalise particles weights ω∗(p,d)

n via (3.48).
17 Evaluate endpoint likelihood p(y1:n|D = d) in (3.45).
18 end
19 Determine endpoint probability p(D = d|y1:n) in (3.43).
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where the mean can be computed as follows based on (3.49),

E(ln|y1:n) ≈
NP∑
p=1

ω∗(p)
n G⊤µ

(p)
n|n.

or b) attains the highest value in the posterior density of the intent, i.e.

i = arg max
d=1,2,...,ND

p(ln = pd|y1:n), (3.51)

where the posterior can be directly evaluated according to (3.49). This intent inference
strategy for latent destination models is summarised in Algorithm 6. Note that such
an algorithm is a standard particle filter procedure with one additional destination-
determining step at each time instant. Since these particle filtering steps are additionally
necessary for the conventional tracking application, we can regard the estimated intent
as a by-product of the (sensor-level) tracking algorithm.

Such a latent destination model intent inference Algorithm 6 has a complexity of
O(NPN), where N is the number of observations. Consequently, the complexity for
ERV intent inference algorithm (i.e. a full iteration of Algorithm 5) should be less
than O(NDNPN). This reduction follows from: i) the size of state vector is smaller
compared with the latent destination model and ii) the ND particle filters in the
algorithm 5 share the same sample set {Γi, Vi}c,(p). Nonetheless, it should be noted that
the computation complexity of the embedded Kalman filter calculations in Algorithm
5 are still relatively high for large number of nominal destinations. Therefore, the
latent destination models, which only requires one particle filter, regardless of number
of destinations, should be a more computationally efficient approach.

Algorithm 6: Intent inference with the latent destination models
1 for particles p = 1 : NP do
2 Set {µ(p)

0|0,P
(p)
0|0 } to the mean and covariance of initial state prior p(x0).

3 Set the initial self-normalised weight ω∗(p)
0 = 1

NP
.

4 end
5 for time step n = 1 : N do
6 Proceed one-step particle filtering via Algorithm 4, and store the output.
7 Determine the most probable destination via (3.50) or (3.51).
8 end
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3.6 Results

The performance of the introduced stable Lévy modelling is assessed here with real
data from three scenarios. The first two consider the intent inference task for improving
human-computer interaction (HCI), specifically when the user point-select motion in
2-D with a mouse cursor and 3-D free hand pointing gestures are subjected to severe
perturbations. Knowing the interface item the user intends to select on the interface,
early in the point-select task, can noticeably simplify and expedite the interactions,
e.g. see the Section 2.1.1 and [123, 90, 7]. In the third case, we use trajectory data
from a fast manoeuvring maritime vessel to evaluate the tracking capability (i.e. only
kinematic state estimation) of the proposed stable Lévy approach and compare it
against other conventional Gaussian models. We also address practical implementation
aspects of an stable Lévy model, including parameterisation and complexity.

Unless otherwise specified in subsequent subsections, parameter choices were manu-
ally tuned to achieve satisfactory performance across a range of data examples. This
follows a similar mixed procedure of initial broad adjustments followed by finer refine-
ments, as detailed in Section 2.5.0.2. It’s worth noting that the physical interpretations
highlighted in Section 2.5.0.2 were extended to both Gaussian and Lévy ERV models
examined in this section. However, one must also recognise the limitations of such
physical interpretation-driven tuning, as discussed in the same section. Parameter
estimation for these models is an important task that can be carried out using the
likelihood functions and/or cross validation [124]; a full exploration of this is beyond
the scope of this thesis, which is primarily concerned with the exposition of new
methodologies.

3.6.1 Intent inference for HCI with 2-D pointing motion

The employed dataset includes 16 2-D mouse cursor trajectories (each consists of
100-500 data points) recorded by a computer whilst participants suffering from motor-
impairment, namely a mild-severe form of cerebral palsy, undertook interaction tasks
with a mouse to select icons on experimental graphical user interface (GUI) displayed
on the screen; this is the classical Fitt’s law task, ISO 9241. The pointing trajectories
in this case exhibit tremor and sharp jerks/jolts (i.e. sharp manoeuvres) induced by
the motor-impairment. Four example tracks are depicted in Fig. 3.2 with the GUI
which comprises of 16 selectable icons in a circular formation. The participant always
starts from the central icon prior to selecting a highlighted interface item.
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Fig. 3.2 Example real mouse-cursor complete pointing tracks. Four distinct tracks
(each plotted in a unique color) originate from the central icon, moving to select a
highlighted interface item.

Here, we compare the intent prediction results of several Gaussian and stable-Lévy
models from the above pointing dataset. They are the : 1) Gaussian ERV (G-ERV,
proposed in [67]), 2) stable Lévy ERV (L-ERV, proposed here in Section 3.4.2.1), 3)
Gaussian dynamic (σB ̸= 0) latent destination (G-DLD, proposed here similarly as in
Section 3.4.2.2), 4) Gaussian static (σB = 0) latent destination (G-SLD, proposed here
similarly as in Section 3.4.2.2), 5) stable Lévy DLD (L-DLD, proposed here in Section
3.4.2.2), and 6) stable Lévy SLD (L-SLD, proposed here in Section 3.4.2.2) models.

Performance is evaluated in terms of the aggregate intent inference success rate,
defined as the fraction of the pointing motion duration (from the start of the task
to selecting the highlighted interface item) for which the true destination is correctly
predicted. This metric remains consistent with the one used in the previous chapter.
For a more comprehensive understanding of this metric, including its limitations and
alternatives, please refer to Section 2.5.0.1. The endpoint is determined according to
the decision criteria (3.44) for ERV models and (3.51) for latent destination models.
Whilst the standard Kalman filter is utilised for the Gaussian ERV model as in [67] and
similar for the G-DLD/G-SLD, Rao-Blackwellised particle filter with 5000 particles
is applied with the stable Lévy models and 10 Monte Carlo runs per trajectory are
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carried out. The overall average success rates (i.e. average from all 16 tracks and
10 Monte Carlo runs per trajectory for the stable Lévy models) and corresponding
standard deviations are shown in Fig. 3.3.

Fig. 3.3 Average intent inference success rate for 2-D pointing tasks; the red error bar
indicates ±1 standard deviation.

The parameters of the considered models are listed in Table 3.2. They were manually
tuned to achieve a good individual model performance, which entailed setting different
measurement noise covariances, i.e. R, albeit for the same (accurate) observations
of the cursor location. We also specify the Gaussian prior of intent for the latent
destination models, such that its mean is the first observed cursor’s position (i.e. in the
vicinity of the central GUI icon) and covariance (denoted by Σd) is stated in Table 3.2.
For the SLD model, it is necessary that Σd is sufficiently large to assign reasonable
prior probabilities to all nominal endpoints.

It can be noticed from Fig. 3.3 that the proposed stable Lévy models deliver the
highest intent prediction success, with the latent destination formulation achieving
the best performance. This can be attributed to their ability to better capture the
sharp swings and piece-wise straight lines present in the pointing motion (see Fig.
3.2). For the same type of dynamic noise, the success rates of the SLD and ERV
models (i.e. G-ERV versus G-SLD or L-ERV versus L-SLD) are similar. This may
be due to their common assumption of a fixed intent throughout the pointing task.
However, we recall that the latent destination models require lower computational effort
with the introduced efficient intent inference procedure. Additionally, the superior
results with the DLD models can be due to their intrinsic capacity to quickly recover
from a misjudgement on the true endpoint induced by a non-destination reverting
(e.g. unintentional perturbation-originated) jump and/or capture the changing nature
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Table 3.2 Model parameters

Models Parameters
G-ERV η = 0.4, ρ = 7, σGaus = 50, R = 0.
L-ERV α = 1.45, c = 1, η = 0.4, ρ = 1.2, σW = 20, R = 25I2.
G-SLD η = 0.4, ρ = 8, σGaus = 100, R = 0, Σd = 10000I2.
L-SLD α = 1.6, c = 1, η = 0.3, ρ = 1.5, σW = 25, R = 25I2, Σd = 10000I2.
G-DLD η = 0.3, ρ = 1.5, σGaus = 35, σB = 10, R = 0, Σd = 25I2.
L-DLD α = 1.5, c = 1, η = 0.3, ρ = 1.5, σW = 20, σB = 10, R = 25I2,

Σd = 25I2.

of intent during a pointing task. For instance, the intent at the beginning of the
point-select motion may not be the precise location of the GUI, but rather its general
on-screen region or even only its direction. This is supported by the common premise
in HCI that a cursor pointing motion consists of two parts, a large ballistic movement
to near the endpoint followed by several smaller homing ones [123].

The cursor trajectories in Fig. 3.2 exhibit abrupt jumps/jolts, clearly not following
a Gaussian process, and hence more likely to be appropriate for our proposed Lévy
models, which can represent more erratic (extreme) manoeuvres. Our models can deal
with even more extreme patterns, for instance those induced by a more severe motor
impairment condition, as was previously demonstrated in the 2-D synthetic tracks
presented in Fig. 3.1.

We would like to emphasise that the performance of all methods shown in Fig.
3.3 greatly exceeds that of a mere random guess, which would have a success rate of
about 6.25%. Additionally, if one were to simply predict the nearest icon to the cursor
as the intended destination, observation of the four example trajectories in Fig. 3.2
suggests that predictions would be incorrect for over half the track’s duration. This is
especially noticeable in instances where a sudden movement or jolt redirects the cursor
to a distant location, as depicted by the red tracks in Fig. 3.2. In such scenarios, the
impressive 75% average success rate of the L-DLD model stands out significantly.

3.6.2 Destination prediction with freehand pointing gestures

Predictive touch technology introduced in Section 2.1.1 utilises observations from a
gesture tracker, i.e. the coordinates of the pointing hand/finger in 3-D, to predict (in
real-time) the intended GUI icon on a display [67, 7]. In this section, we consider 10
complete 3-D pointing trajectories collected in a moving vehicle by a predictive touch
system gesture tracker whilst participants interacted with the main in-car touchscreen
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(the Dataset B in Section 2.5). They feature severe perturbations in the form of
abrupt manoeuvres and jolts caused by the present vibrations and accelerations due to
aggressive driving on badly maintained roads. Fig. 3.4 depicts three of those tracks
and the GUI with 37 selectable icons; a track recorded in a static car is included (in
red) for reference. Fig. 3.5 also exhibits six “synthetic” trajectories generated by the
developed spatial Lévy ERV model to illustrate its potential for representing perturbed
intent-driven pointing movements in 3-D. They closely resemble the real data in Fig.
3.4.

Next, we evaluate the intent inference performance of the stable Lévy ERV model
and compare it with the outcome of the jump and Gaussian ERV models in [69], which
employed the same dataset of 10 real perturbed tracks. The parameters were manually
tuned for successful endpoint predictions. For the stable Lévy ERV model they are
α = 1.4, σW = 300, c = 20, η = 60 and ρ = 15; and for the Gaussian ERV model are
η = 55, ρ = 15 and σ = 3000; the jump-ERV model utilises the parameters stated in
Table 2.2 and in [69]. Similar to the cursor pointing data in Section 3.6.1, a Gaussian
measurement model is assumed.

The prediction success rates for the three assessed models are shown in Fig. 3.6. It
can be seen that the proposed Lévy state-space model achieves a significant performance

Fig. 3.4 Real hand pointing data
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Fig. 3.5 Synthetic pointing data from the spatial ERV model; they are not used in
intent inference performance evaluation.

improvement compared to the ERV model, and slightly outperforms the jump-ERV
model in [69]. The lower success rate and larger standard deviation with pointing
gestures in 3-D compared to those in Section 3.6.1 are due to the high number of nominal
endpoints (37 instead of 16) with multi-circular layout. Readers are reminded that the
chosen metric, as well as its limitations and alternative options, are elaborated upon in
Section 2.5.0.1. Similar to previous intent inference tasks, the methods presented in this
subsection significantly exceed the performance of a simple random guess, which would
be around 2.7%. It’s noteworthy that while the Lévy-ERV model doesn’t outperform
the BD-CA model in this task, as evidenced by its 56.79% average success rate in
Fig. 2.6 from the previous chapter, it does exhibit a marked improvement over the
Gaussian ERV model. The latter was demonstrated in [67] to surpass more traditional
predictors, such as those based on nearest-neighbour methods.

3.6.3 Tracking a manoeuvring vessel

Lastly, we treat a conventional (sensor-level) tracking problem where the objective is
to track a highly manoeuvring maritime target, as in [88], with the proposed stable
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Fig. 3.6 Average intent inference success rate for freehand pointing movement in 3-D;
red error bar is ±1 standard deviation.

Lévy model. The vessel trajectory 4 is depicted in Fig. 3.7. The voyage starts at time
t = 0 and ends at t = 2583 such that the ground truth includes 118 position data
points at irregular timesteps. To examine the presented Rao-Blackwillised particle
filtering strategy, observations are obtained by adding Gaussian noise, with a standard
deviation of 100, to the ground-truth data in each dimension. It should be noted that
with such an observation model, the Gaussian Singer model is expected to track the
vessel reasonably well. Thus, a significant improvement in the tracking performance
with a stable Lévy model is not sought. Instead, below we compare the state estimation
accuracy of the Gaussian Singer and stable Lévy Singer models, and outline the
advantages of utilising the versatile parameters in the introduced stable Lévy modelling.
We also use this real example to highlight key practical implementation aspects such
as parameter sensitivity and computational requirements.

For evaluation purposes, we generate 100 measurement sets, each with N = 118
observations originating from the ground truth trajectory with an added Gaussian
noise of covariance R = 1002I2; a measurement set is displayed in Fig. 3.7. Here, the
root mean square error (RMSE) is considered as the metric for tracking performance.
It is defined, for one set, by

RMSEds = 1
N

√√√√ N∑
n=1
∥ẑn − zn∥, (3.52)

4This dataset was kindly provided by QinetiQ Ltd., Winfrith.
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Fig. 3.7 Manoeuvring vessel truth trajectory from t = 0 to t = 2583 with 118 recorded
locations and a measurement set.

where zn is the ground truth of the vessel’s position, ẑn is its estimated value, ds is
the index of the measurement set (i.e. ds = 1, 2, ..., 100) and N = 118 is the total
number of observations. The estimated position ẑn is extracted from the mean of the
estimated state in (3.42) as per

ẑn = CÊ(xn|yds
1:n) =

NP∑
p=1

ω∗(p,ds)
n Cµ

(p,ds)
n|n , (3.53)

where C is the mapping matrix that extracts the spatial position from the state vector
xn (in this experiment C is the observation matrix in (3.33)), and µ

(p,ds)
n|n as well as

ω∗(p,ds)
n are stored by the particle filter as in Algorithm 4. To quantify the overall

tracking accuracy, we calculate the average RMSE over the total 100 measurement
sets, dubbed M-RMSE, each with only one Monte Carlo run (e.g. for the Gaussian
Singer model, it only involves running a Kalman-filter). To explore potential Monte
Carlo implementation issues, we also define the P-RMSE as the average RMSE over
100 Monte Carlo runs with the same measurement set.
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Table 3.3 Parameters and filtering performance of the stable Lévy (including Gaussian)
Singer model. All models are with λ = 10, and for non-Gaussian ones c = 0.1, NP =
5000.

Value of α M-RMSE(m) and tuned model noise
2 (Gaussian) 95.2517± 7.5061 (σGaus = 1.565)

1.6 94.1214± 8.0208 (σW = 2.013× 10−1)
1.3 93.3269± 8.2627 (σW = 8.944× 10−2)
1.05 92.7565± 8.2672 (σW = 3.578× 10−2)
0.9 92.4250± 8.4911 (σW = 1.118× 10−2)
0.7 92.0316± 8.5049 (σW = 2.236× 10−3)
0.5 91.7698± 8.5211 (σW = 1.118× 10−4)
0.3 91.7146± 8.5943 (σW = 1.342× 10−7)

In terms of the models parameterisation procedure, we first select the parameters
for the well-known Gaussian Singer model that achieve a low M-RMSE. The model
noise σGauss for a fixed λ is then examined, noting that the tuned M-RMSE does not
vary for λ > 5. Hence, we choose λ = 10 for the Gaussian Singer model, and commence
tuning σW for the stable Lévy model with λ = 10. The M-RMSE for the stable Lévy
Singer model and its standard deviation are listed in Table 3.3 for several values of the
stability parameter α.

Table 3.3 shows that, for all presented α values, the proposed stable Lévy Singer
models slightly outperform the Gaussian Singer model. Additionally, a noticeable trend
is that the reduction of RMSE can be achieved with a lower α, which demonstrates
the effectiveness of the α-stable extension of the conventional Gaussian noise in this
simple linear Gaussian observation scenario. Here, we present only results for α > 0.3
as our current implementations led to numerical issues5 for lower values. Additionally,
we note that we also experimented with a stable Lévy Langevin model for this dataset
(model as described in Section 3.4.1.1 with a fixed λ = 0.0001) and this delivers
similar performance to that of the analysed Lévy Singer model, and the M-RMSE was
marginally improved, e.g. 93.1955 for α = 1.3, and 91.4907 for α = 0.3. For the Lévy
Langevin model, lower α also resulted in a lower RMSE, when σW is manually tuned,
following a similar trend to Table 3.3.

5In our dataset, the Lévy Singer model, when set with parameters λ = 10 and α < 0.3, leads the
predictive covariance matrix P

(p)
n|n−1 in (3.37) for some particle p to have both extremely large and

small diagonal elements. This can result in the Kalman filter update, as per the standard procedure
in (3.37), not producing a positive semi-definite matrix P

(p)
n|n even when P

(p)
n|n−1 is. Potential solutions

include rescaling the covariance matrix, adopting the Joseph form of the Kalman filter update, or
exploring other Kalman filter variations. For further insights, see [125].
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Table 3.4 Run time T , filtering P-RMSE and M-RMSE of the stable Lévy Singer model
for different values of Poisson series truncation c values and particle numbers NP .

c NP T (s) P-RMSE (m) M-RMSE (m)
0.6 500 19.90 106.77± 0.296 93.15± 8.18
0.1 5000 41.1785 106.69± 0.101 93.09± 8.25
0.1 1500 12.6012 106.70± 0.200 93.10± 8.25
0.1 500 4.2055 106.74± 0.344 93.19± 8.29
0.02 1500 4.9956 106.71± 0.202 93.14± 8.24
0.02 500 1.6633 106.73± 0.323 93.09± 8.22
0.003 500 1.1446 106.93± 0.344 93.43± 8.26
0.001 500 1.0929 108.11± 0.333 94.53± 8.19

We next utilise the same stable Lévy Singer model setup with λ = 10, α = 1.2 and
tuned model noise specified as σW = 0.06708 to investigate the tracking accuracy and
the computational requirement (measured in terms of execution run time) for different
truncation parameters c of the Poisson series representation (3.10) and number of
particles NP . All algorithms are implemented in MATLAB, running on a laptop with
Intel Core i9-9980HK at 2.4 GHz. The attained results are listed in Table 3.4 such
that the P-RMSE is computed with the measurement set displayed in the Fig. 3.7 and
100 Monte Carlo runs are conducted.

It can be seen from Table 3.4 that a higher NP can lower the standard deviation of
the P-RMSE as it reduces the Monte Carlo error introduced by the particle filtering. It
cannot, however, tangibly impact the standard deviation of the M-RMSE or the mean
of both RMSE metrics. This is because the overall (average) tracking performance is
sensitive to the measurement set, not to the filtering accuracy/uncertainty. Furthermore,
the truncation parameter c only undermines the state estimation when its value is
unreasonably low, e.g. 0.003, 0.001. This is due to the additional Gaussianity (and
less heavy-tailedness) induced by the inaccurate integral representation since a lower c
incorporates fewer Poisson terms in (3.10) on page 62 with more residuals approximated
by a Gaussian variable in (3.13) on page 63. A higher c or NP inevitably requires more
computational effort. However, it can be noticed that for a wide range of c and NP

values, the M-RMSE for α = 1.2 in Table 3.4 is between that of α = 1.3 and 1.05 in
Table 3.3 as expected. Hence we can confidently anticipate that lower c and NP values,
for instance c = 0.02 and NP = 500 which only demands a run time of 1.66 seconds
per measurement set, can still deliver a comparable performance as in Table 3.3.

We now illustrate the tracking performance by considering one particular set of
observations, corresponding to a single generation of the observation noise process added
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to the ship trajectory data. The stable Lévy Singer (α = 0.3) and Gaussian Singer
models with the parameters listed in Table 3.3 are employed to perform the smoothing
tasks. For the Gaussian model, the Rauch–Tung–Striebel (RTS) smoother [36, 126]
is applied to obtain the smoothed estimates. For the Lévy model, a straightforward
smoothing strategy is carried out by running NP RTS smoothers conditioned on the
latent variable samples obtained from the particle filtering, i.e. the samples which
provide empirical approximation in (3.39). The observations and smoothed trajectories
for both models are depicted in Fig. 3.8, and the smoothing root squared error
compared with the ground truth at each time-step is plotted in Fig. 3.9. It can be
seen that the Lévy smoothed trajectory is improved compared to the tuned Gaussian
model in two clear aspects: first, the Lévy model is better able to capture several of the
sharp corners in the trajectory, see e.g. t = 273 where the Gaussian over-rounds the
corner; and secondly, it is better able to capture the near straight-line trajectories in
between the sharp manoeuvres, see e.g. times t = 673 to 1049. The improved tracking
performance of the Lévy Singer model can also be noticed in Fig. 3.9, where the Lévy
Singer model achieves a lower root squared error for most of the voyage (including
during the two periods mentioned above).

To illustrate the potential of a Lévy state space model to capture abrupt manoeuvres
compared to the standard Gaussian formulation, including estimating the velocity
vector, we consider a synthetic 2-D trajectory with sudden changes. Both, the Lévy and
Gaussian Singer models, are examined for the smoothing task. The track, displayed in
Fig. 3.10, is generated by the stable Lévy Singer model with α = 1.2, λ = 100, and
σW = 14.14. A measurement set is then generated by adding a Gaussian noise with
a covariance of R = 0.22I2. The ground-truth, measurements set and the estimated
smoothed trajectories are shown in Fig. 3.10. The Lévy model uses the same parameters
as in the synthetic track, whilst the Gaussian model is manually fine tuned to give the
lowest average RMSE over 100 measurement sets generated with the same observation
noise covariance (including the testing measurement set showed in Fig. 3.10), specifically
λ = 100 and σGaus = 93.3381.

Similar to the smoothing estimation for the real vessel data, it can be seen from Fig.
3.10 that the dynamic noise of a Gaussian model can be tuned to capture manoeuvres,
despite still not following sharp turns and introducing over-smoothing effects (e.g.
around t = 9.15 and t = 11.55). In contrast, the stable Lévy model offers more
accurate tracking of abrupt turns and a lower overall RMSE (0.0809 and 0.0922 for
the Lévy and Gaussian model respectively). To demonstrate its ability to capture
sharp changes in the state, we examine the estimated velocity for the trajectory in
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Fig. 3.8 Smoothed trajectories (mean of the estimate) from the Lévy (α = 0.3) and
Gaussian Singer models, and corresponding 95% confidence ellipse. The black squares
are the true target positions corresponding to the error ellipse. Notably, the vessel
makes four turns at times t = 273, 1307, 1467 and 2134.

Fig. 3.9 Real time (t = 0 to 2583) root squared error compared with the ground truth
for smoothing the observations in Fig. 3.8 with the Lévy (α = 0.3) and Gaussian Singer
models. The x-axis represents time t, while the y-axis indicates the root squared error
value as defined in (3.52). Vertical bars mark the specific times showcased in Fig. 3.8.
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Fig. 3.10. It can be clearly noticed from Fig. 3.11 that the stable Lévy Singer model
can accurately follow the rapid changes in velocity (e.g. at t = 8.3, t = 9.15, and
t = 11.55), whilst the Gaussian model fails to follow such sharp changes timely and
instead over-smooths them. Furthermore, the Lévy model demonstrates a steady
and accurate velocity estimation when the vessel exhibits a nearly constant velocity
moving (e.g. from t = 4 to t = 8, from t = 10 to t = 11.5), and thus it provides useful
information (e.g. direction of travel) for the position inference and intent inference tasks.
For the Gaussian case, an increase in the dynamical noise is needed to (nearly) follow
manoeuvres and reduce overall RMSE at the expense of higher noise during (nearly)
straight trajectory sections where estimates are more exposed to noise in the available
observations. Such an undesirable trade-off is not imposed by the proposed Lévy model,

Fig. 3.10 Synthetic trajectories including 250 data points generated from the Lévy
Singer (α = 1.2) model and a measurement set. Smoothed trajectories with the Lévy
and Gaussian Singer models are plotted with 95% confidence ellipse.
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since its heavy-tailed behaviour can adapt automatically to both smooth/straight
sections and to abrupt changes in state.

3.7 Conclusion

A new probabilistic framework, based on novel stable Lévy models, is proposed in
this chapter for sensor-level (e.g. kinematic state estimation) and meta-level (e.g.
destination prediction) tracking of highly manoeuvring objects. An efficient intent
inference strategy with the latent destination model, which can apply to Gaussian
and/or stable Lévy dynamic noise(s) is also introduced. Results from real data

Fig. 3.11 Smoothed velocity estimates based on the observations in Fig. 3.10. Top and
bottom panels are for x and y directions, respectively. The mean for 1) the Gaussian
Singer model, 2) the Lévy Singer model, 3) each Monte Carlo conditioned Lévy Singer
model estimate are also plotted.
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illustrate the ability to deliver superior intent inference performance with the latent
destination model, and demonstrate some useful performance improvements attained
by the developed stable Lévy models compared with conventional Gaussian models.

From the classical sensor-level tracking example of a manoeuvring vessel and a
synthetic highly manoeuvring trajectory, we can see that the proposed approach demon-
strates its ability to track accurately the abrupt manoeuvres (e.g. sharp turns and/or
accelerations). It also provides automatically a more steady kinematic state estimation
on a near constant velocity movement. Although the overall positional estimates from a
Lévy model are only slightly more accurate in our presented simulations, we anticipate
that more significant tracking and intent improvements may be achieved in future work
with other observation functions (e.g. non-linear and/or non-Gaussian), trajectories
with more severe manoeuvres (such as flight patterns of drosophila from animal tracking
where fruit flies can alter their heading by 90 degrees within approximately 50 ms [98]),
and more general scenarios that may for example include clutter and data association
issues (tracking scenarios involving clutter and data association will be discussed in
Chapter 5 and Chapter 6). Other stable Lévy models, which have not been tested here
(such as the constant velocity and constant acceleration models), may also provide
performance enhancements for the general manoeuvring target tracking case. Whilst
the stable Lévy model is formulated above as a continuous-time linear system driven by
multivariate isotropic α-stable noise, a more general non-isotropic noise driven model
can be explored in the future, see [21] for proposals in the univariate case.

Appendix 3.A Derivation of the variance of the
residual terms

Consider the residual terms in (3.11) as the summation of Poisson series on the fixed
interval [c∆t, d∆t), with d → ∞, and their number N[c,d) is defined by the Poisson
distribution

N[c,d) ∼ Poisson ((d− c)∆t) , (3.54)

and consequently the residuals terms can be expressed by

Rc(∆t) = lim
d→∞

∆t1/α

N[c,d)∑
i=1

Γ−1/α
i f(∆t, Vi)Ui, (3.55)
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with {Γi} are now independently and uniformly distributed in the interval [c∆t, d∆t).
Additionally, the summands in (3.55) are independent and are zero mean. Subsequently,
we have

Var[
N[c,d)∑
i=1

Γ−1/α
i f(∆t, Vi)Ui]

=E


N[c,d)∑

i=1
Γ−1/α

i f(∆t, Vi)Ui

N[c,d)∑
i=1

Γ−1/α
i f(∆t, Vi)Ui

⊤
=E

N[c,d)∑
i=1

Γ−2/α
i f(∆t, Vi)UiU

⊤
i f(∆t, Vi)⊤


+ E

N[c,d)∑
i=1

N[c,d)∑
j ̸=i,j=1

Γ−1/α
i Γ−1/α

j f(∆t, Vi)E[UiU
⊤
j ]f(∆t, Vj)⊤

 (3.56)

=E
N[c,d)∑

i=1
Γ−2/α

i f(∆t, Vi)UiU
⊤
i f(∆t, Vi)⊤

 (3.57)

=E[N[c,d)]E[Γ−2/α
i ]E[f(∆t, Vi)UiU

⊤
i f(∆t, Vi)⊤],

where the last equality arises from the independence of each summand in (3.57), with
both Γ−2/α

i and f(∆t, Vi)UiU
⊤
i f(∆t, Vi)⊤ also being independent. The expectation in

(3.56) is zero since all E[UiU
⊤
j ] (i ̸= j) is zero, given that Ui and Uj are independent

with zero means. Recall that N[c,d) is Poisson distributed with rate (d − c)∆t, Γi is
uniformly distributed in [c∆t, d∆t), Vi is uniformly distributed between (0,∆t], and
Ui ∼ N (0, σ2

W Im), we have

E[N[c,d)] = (d− c)∆t,

E[Γ−2/α
i ] = 1

(d− c)∆t

∫ d∆t

c∆t
Γ−2/α

i dΓi

= d1−2/α − c1−2/α

d− c
∆t−2/α α

α− 2 ,

and

E[f(∆t, Vi)UiU
⊤
i f(∆t, Vi)⊤]

=EVi
[f(∆t, Vi)EUi

[UiU
⊤
i ]f(∆t, Vi)⊤]

=σ
2
W

∆t

∫ ∆t

0
eA(∆t−u)HH⊤eA(∆t−u)⊤

du = σ2
W

∆tQ(∆t),
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Therefore, the sought variance reduces to

Var[Rc(∆t)] = lim
d→∞

∆t2/αVar[
N[c,d)∑
i=1

Γ−1/α
i f(∆t, Vi)Ui]

= lim
d→∞

(
d1−2/α − c1−2/α

)
σ2

W

α

α− 2Q(∆t)

=σ2
W

α

2− αc
1−2/αQ(∆t).

Appendix 3.B Derivation of the matrix fraction de-
composition

The integral in (3.15) can be expressed as

M (∆t) =
∫ ∆t

0
eA(∆t−u)Bdu =

∫ ∆t

0
eA(∆t−u)duB.

Let J (∆t) =
∫∆t

0 eA(∆t−u)du, and the aim is to prove that J (∆t) is equal to JM in
(3.25). By Leibniz integral rule, we have

d

d∆tJ (∆t) = d

d∆t

∫ ∆t

0
eA(∆t−u)du

=
∫ ∆t

0

d

d∆te
A(∆t−u)du+ eA(∆t−∆t) = AJ (∆t) + IsA

,

recalling that A and the identity matrix IsA
are of size sA× sA. We can then construct

the linear differential equation

d

d∆t

J (∆t)
IsA

 =
 A IsA

0sA
0sA

J (∆t)
IsA

 . (3.58)

It can be easily seen that equation (3.58) has the solution
J (∆t)

IsA

 =expm
 A IsA

0sA
0sA

∆t
J (0)

IsA


=expm

 A IsA

0sA
0sA

∆t
0sA

IsA

 , (3.59)

which is exactly (3.25) so that we have J (∆t) = JM .





Chapter 4

Conditionally Factorised Variational
Bayes with Importance Sampling

The approximate inference methods employed in previous chapters are limited to the
Monte Carlo methods, which were verified to deliver satisfactory results for the consid-
ered inference problem. However, the Monte Carlo methods can be computationally
demanding, and the requirement for real-time processing often limits their application
in more complex probabilistic inference settings, such as multi-object tracking with clut-
ter. This motivates us to consider other inference methods with faster implementation.
Subsequently, an efficient approximate inference technique named coordinate ascent
variational inference (CAVI) will be the main ingredient of our inference paradigm for
the remaining chapters of this thesis.

CAVI is a popular approximate inference method; however, it relies on a mean-field
assumption that can lead to large estimation errors for highly correlated variables. In
this chapter, we propose a conditionally factorised variational family with an adjustable
conditional structure to retain the dependence between desired variables, and derive the
corresponding coordinate ascent algorithm for optimisation. The algorithm is termed
Conditionally factorised Variational Bayes (CVB) and implemented with importance
sampling. We show that by choosing a finer conditional structure, our algorithm can
be guaranteed to achieve a better variational lower bound, thus providing a flexible
trade-off between computational cost and inference accuracy. The validity of the
method is demonstrated in a simple posterior computation task. Some of the results
from this chapter have been published in [127]. 1.

1© 2022 IEEE. Reprinted, with permission, from [127]
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4.1 Introduction

As one of the earliest formulations of variational inference [23, 28], CAVI (also known
as mean-field variational inference [128, 12]) is a popular method for approximation of
intractable posterior densities for Bayesian models. Compared to another well-known
Bayesian approximate inference method Markov chain Monte Carlo (MCMC), CAVI is
faster, easier to monitor its convergence, and can typically yield a comparable inference
accuracy. Moreover, the approximate posterior obtained by CAVI can be efficiently
stored by a small number of parameters if its parametric form is well-known, in contrast
to the large number of samples required to represent the approximate posterior in
the Monte Carlo method. For these reasons, CAVI has been widely applied as an
alternative strategy to MCMC. For example, in the signal processing field, CAVI has
been employed to develop approximate Bayesian filters [129, 130], smoothers [128, 131],
and to carry out approximate Bayesian parameter estimation for state space models
[128, 59].

Despite the above-mentioned benefits, CAVI relies on the mean-field assumption:
it assumes independent fully factorised variational posteriors. Such an assumption
renders the approximation inaccurate for highly correlated variables and may introduce
additional local optima [132, 28]. To mitigate this problem, this chapter presents the
CVB, a coordinate ascent optimiser that can theoretically yield a better approximation
with an adjustable conditional variational distribution preserving the dependence
between variables.

4.1.1 Problem formulation

Consider a Bayesian model, where the set of all observed variables is denoted as Y ,
and let X denote the set of parameters and latent variables whose posterior p(X|Y )
is of interest but intractable. This chapter focuses on approximating this posterior
within the variational inference framework. To this end, we first propose a family of
variational distributions q, and then find the member of this family which minimises
the Kullback-Leibler (KL) divergence to the exact posterior. Such a procedure is
equivalent to finding

q∗ = arg max
q

F(q), (4.1)
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subject to the restriction that q belongs to the predefined family. The evidence lower
bound (ELBO) F(q) in (4.1) is defined as

F(q) = Eq(X) log p(X, Y )
q(X) . (4.2)

In this chapter, we propose to use a conditionally factorised family for the variational
distribution q — a generic and flexible family where the dependence between the
desired variables can be constructed with user selected detail. It encompasses the
standard mean-field family as a special case.

4.1.2 Background of CAVI

Classical CAVI is a variational inference algorithm where the variational distribution
q belongs to a mean-field family qmf . This family assumes that the approximated
distribution qmf (X) can be independently factorised as follows,

qmf (X) =
ν∏

i=1
qi

mf (xi), (4.3)

where each xi(i = 1, 2, ..., ν) is disjointly partitioned from X, i.e. X = {x1, x2, ..., xν},
and each qi

mf is a free-form distribution (a variational distribution qi
mf is free-form if

there is no predefined parametric form for it). With such an assumption in (4.3), the
optimisation problem in (4.1) can be solved by a coordinate ascent algorithm. Specifi-
cally, for i = 1, 2, ..., ν, the algorithm iteratively updates qi

mf(xi) by the optimisation
in (4.4) while keeping qi−

mf fixed, where qi−
mf = ∏

l ̸=i q
l
mf (xl).

arg max
qi

mf

F(qmf ) ∝ exp(Eqi−
mf

(xi−) log p(X, Y )) (4.4)

This update is a fundamental result based on variational calculus, and the derivation
can be found in [23, 12, 128]. As the name CAVI suggests, each update step in (4.4) is
coordinate-wise and guarantees a non-negative increment of the ELBO, such that (4.2)
will eventually reach a local maximum of the optimisation problem (4.1).

In some cases, the optimal distribution in (4.4) may not be analytically tractable.
A remedy to this issue is to sample from intractable variational distributions, thereby
using Monte Carlo methods to approximate the other optimal distributions in closed-
form expressions. For example, to carry out variational inference for models with
constrained prior, [133] uses MCMC to obtain samples for the intractable update in
the standard CAVI procedure; and, [59] applies sequential Monte Carlo within CAVI
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procedure to estimate the parameters of a nonlinear state space model. Approximating
intractable coordinate ascent updates with Monte Carlo methods is also a key concept
utilised in the implementation of the proposed CVB algorithm.

4.1.3 Related work

Compared to CAVI (Section 4.1.2), modern gradient-based variational inference algo-
rithms such as stochastic variational inference [29], black-box variational inference [30]
and variational auto-encoders [31] typically require a predefined parametric form for
the variational distribution, and they can be easily scaled to large datasets and are
sometimes faster and easier to implement in modern machine learning tasks. However,
to our knowledge, the procedure of computing the required gradient for these algorithms
can be laborious and even render it inapplicable for complex models which may occur
in the signal processing field, e.g. models subject to hard constraints [133], and/or
models involving complicated compositional variables such as Poisson process arrival
times [94, 69]. In the contrast, the variational distributions arising from coordinate
ascent updates such as (4.4) can naturally account for the complex model priors. This
makes CAVI applicable to a wider range of probabilistic models. For example, if the
prior p(xi) is a truncated distribution, then the optimal distribution in (4.4), even
approximated with Monte Carlo methods, still preserves the same truncation (see
[133]). For this reason, in this thesis we focus on the variational inference method
which only requires free-form coordinate ascent update for its flexibility in a wide range
of probabilistic models.

Restoring the dependence within the variational distributions has been studied since
the early days of the variational inference method [134]. This is known as structured
variational inference in the machine learning community, see [28, 23, 132]. Early research
on structured variational inference is often model-specific and limited to the graphical
model setting [134, 135]. Attempts to improve the mean-field approximation in a
general probabilistic model, to our knowledge, began with [136], whose parameters are
numerically optimised to increase the ELBO. More recently, the conditional variational
distributions employed in [132, 137] are more closely related to our work; the conditional
structure they implicitly assume (termed conditional everywhere in this thesis) can
be regarded as a limiting case of the setwise conditional structure, which we propose
and define in this chapter for the conditionally factorised family. Moreover, whilst
[132, 137] focus on deriving the update for stochastic variational inference , we consider
deriving the coordinate-ascent update for free-form variational distributions.
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4.1.4 Contributions

The first major contribution in this chapter is the introduction of a conditionally
factorised variational family that can flexibly account for the conditional structure
between variables, encompassing the standard mean-field family, e.g. in [23] as a special
case. Besides mean-field structure, the conditional structures assumed in prior works
[132, 137] can also be viewed as specific cases of the conditional structure proposed
within our conditionally factorised variational family. Moreover, this chapter derives
the resulting theoretical coordinate ascent updates in detail and incorporate them
into the proposed theoretical CVB algorithm. Furthermore, this chapter shows that a
finer conditional structure in CVB can be guaranteed to achieve a better ELBO, thus
providing a flexible trade-off between computational cost and inference accuracy.

Nonetheless, implementing the theoretical CVB is generally intractable. As my
second major contribution, this chapter proposes an importance sampling-based CVB
that approximates the intractable coordinate ascent update within the importance
sampling framework. The applicability of this proposed algorithm is discussed and it
is shown that the algorithm yields an estimated ELBO as a byproduct. I prove that a
finer conditional structure also ensures a higher estimated ELBO, a property analogous
to that of the theoretical CVB. The guaranteed performance improvement over the
standard mean-field CAVI is showcased through a simple example.

4.1.5 Layout

The remaining sections in the chapter are organised as follows. Section 4.2 introduces
the conditionally factorised variational family and the theoretical CVB. Section 4.3
presents the importance sampling-based CVB and discusses its applicability and relevant
properties. Section 4.4 provides detailed proofs and derivations for the theorems and
approximations introduced in the previous two sections. Section 4.5 validates the
proposed method, and Section 4.6 concludes the chapter.

4.2 Conditionally factorised variational Bayes

Consider the problem formulated in Section 4.1.1. Assume X includes at least two
variables. We partition it into two disjoint parts, denoted by the global variable S and
local variable Z (i.e. X = {S,Z}). If required, the local variable Z can be further
partitioned into Nc (Nc ≥ 1) variables, i.e. Z = {Z1, Z2, ..., ZNc}. Note that we do
not impose any restriction on the type of the global or local variables: they can be
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continuous, discrete or mixed type. The variational distribution q and exact distribution
p used in this chapter should be understood as the probability mass function (PMF)
for discrete variables; and as the generalised probability density function (PDF) for
continuous variables and mixed-type variables, where the Dirac delta function is applied
to the discrete part of the variable domain.

4.2.1 Conditionally factorised variational family

A member of the proposed conditionally factorised family should first satisfy the
following factorisation:

q(X) = qg(S)
Nc∏
i=1

qi
c(Zi|S). (4.5)

Note that our CVB method also applies to Nc = 1, whereas a factorisation may improve
the tractability of variational distributions.

Denote the set of all factorised variational distributions in (4.5) by {q}cf =
{qg, q

1
c , ..., q

Nc
c }. No predefined relationship is assumed between distributions in {q}cf

and thus coordinate-wise update for optimisation in (4.1) may be carried out, i.e. one
of the distributions in {q}cf is updated whilst the others are kept fixed. Furthermore,
the global distribution qg is a regular free-form variational distribution in a similar
sense to the free-form distribution in (4.3). Each conditional variational distribution
qi

c is a function of both S and Zi defined as follows. Denote the domain of S as U (i.e.
S ∈ U).

Definition 4.2.1. qi
c(Zi|S) is setwise conditional on a partition Pi if 1) Pi is a partition

of U ; and 2) the distribution qi
c(Zi|S) can be written as

qi
c(Zi|S) =

∑
A∈Pi

qi,A
c (Zi)I(S ∈ A), (4.6)

where I(S ∈ A) is the indicator function; {qi,A
c (Zi) : A ∈ Pi} consists of |Pi| free-form

variational distributions of Zi which have no predefined relationship with each other.

Remark 1. In this thesis, we adopt the definition of a partition of a set from [138], i.e.
a partition of U is a set of non-empty sets which cover U without overlap. Specifically,
Pi is a partition of U if 1) for all A ∈ Pi, A ̸= ∅; and 2) for all A1, A2 ∈ Pi, A1∩A2 = ∅;
and 3) ⋃A∈Pi

A = U .

Remark 2. A special case of setwise conditional is when the partition Pi is the trivial
partition, i.e. Pi = {U}, when qi

c no longer depends on S and the proposed conditionally
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factorised assumption in (4.5) degenerates to the standard mean-field assumption
in (4.3) if Pi = {U} for all i = 1, 2, ..., Nc. Moreover, a limiting case of setwise
conditional can be achieved by setting the partition Pi to the partition of singleton, i.e.
Pi = {{a} : a ∈ U}. In this case |Pi| = ∞ if S includes a continuous variable. This
limiting case is termed as conditional everywhere, whose formal definition can be found
below.

Definition 4.2.2. qi
c(Zi|S) is conditional everywhere if 1) for any k ∈ U , qi

c(Zi|S = k)
is a free-form variational distributions of Zi; and 2) for any j ∈ U and j ̸= k, there is
no predefined relationship between qi

c(Zi|S = j) and qi
c(Zi|S = k).

We now complete the definition of the conditionally factorised family. Each a
realisation of {q}cf that satisfies the above definition is a member of the conditionally
factorised family. Given the factorised variables {S,Z1, ..., ZNc}, the proposed condi-
tionally factorised family is only parameterised by the partitions introduced in the
Definition 4.2.1, i.e. {Pi : i = 1, 2, ..., Nc}.

It is informative to consider how the conditionally factorised family is affected
by the associated partitions. Specifically, it can be easily verified that for variables
{S,Z1, ..., ZNc}, one conditionally factorised family is wider than another (each member
of the latter is a member of the former) if each associated partition Pi (i = 1, 2, ..., Nc)
of the former family is finer than the corresponding partition of the latter (every set
in the former partition is a subset of a set in the latter partition). Therefore, the
conditionally factorised family with conditional everywhere qi

c for all i = 1, 2, ...Nc is the
widest family of the proposed framework, since each qi

c has the finest partition. Also,
the proposed conditionally factorised family is always wider than the fully factorised
mean-field family for variables {S,Z1, ..., ZNc}, since the latter can be considered as a
special case of the conditionally factorised family that assumes the trivial partitions
for all qi

c.

4.2.2 Coordinate ascent update

The aim of variational inference is to find the member of the proposed conditionally
factorised family that solves the optimisation problem in (4.1). A wider family
guarantees a better global optimum, but it may take more effort to search for it. Here a
coordinate ascent algorithm is sought for the optimisation. Specifically, the parametric
form of each distribution from {q}cf is iteratively updated (whilst other variational
distributions are kept fixed) by the optimal distribution given in the following theorem.
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Theorem 4.2.1. Denote the optimal global distribution by q̃g(S) = arg maxqg
F({q}cf ),

and the optimal qi
c(Zi|S) by q̃i

c(Zi|S) = arg maxqi
c
F({q}cf ) for i = 1, 2, ..., Nc, then we

have the unique q̃g(S), i.e.

q̃g(S) ∝
exp

(
E∏Nc

i=1 qi
c(Zi|S) log p(X, Y )

)
∏Nc

i=1 exp
(
Eqi

c(Zi|S) log qi
c(Zi|S)

) . (4.7)

For each qi
c which is setwise conditional on a partition Pi, we have

q̃i
c(Zi|S) =

∑
A∈Pi

q̃i,A
c (Zi)I(S ∈ A), (4.8)

where each q̃i,A
c (Zi) is defined as follows: for A ∈ Pi such that qg(S) = 0 for all S ∈ A,

q̃i,A
c (Zi) can be any distribution; otherwise q̃i,A

c (Zi) is

q̃i,A
c (Zi) ∝ exp

(∫
A qg(S)Eqi−

c (Zi−|S) log p(X, Y )dS∫
A qg(S)dS

)
. (4.9)

For each qi
c which is conditional everywhere, q̃i

c(Zi|S = u) can be any distribution for
all u such that qg(S = u) = 0; for other u such that qg(S = u) ̸= 0, we have

q̃i
c(Zi|S = u) ∝ exp

(
Eqi−

c (Zi−|S=u) log p(Z, Y, S = u)
)
. (4.10)

Remark 1. The integral in (4.9) is in a general sense: it can be replaced by a summation
if S is discrete variable or qg is a PMF. The qi−

c (Zi−|S) in (4.9) and (4.10) denotes∏
l ̸=i q

l
c(Zl|S) for Nc > 1; and when Nc = 1, the operator Eqi−

c
should be neglected, i.e.

Eqi−
c (Zi−|S)[·] = [·].

Remark 2. In general, the optimisers in (4.9) and (4.10) are not necessarily unique.
However, we note that for A ∈ Pi such that the non-negative integral

∫
A qg(S)dS is

neither zero or infinitesimal, we have the unique q̃i,A
c in (4.9). More details about the

uniqueness of the optimiser are discussed at the end of Section 4.4.1.2.

Remark 3. Since setwise conditional is a general representation for qi
c, its corresponding

update (4.9) is also a general formula. Specifically, the conditonal everywhere update
in (4.10) and the standard mean-field update in (4.4) can be recovered from (4.9) by
setting Pi to the corresponding partitions discussed in the Remark 2 for Definition
4.2.1.

The laborious proof of Theorem 4.2.1 is presented in Section 4.4.1 on page 116.
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For any assumed factorised variables {S,Z1, ..., ZNc}, the theoretical coordinate
ascent algorithm, denoted as theoretical CVB, is summarised in Algorithm 7. As with
the standard CAVI, the ELBO is guaranteed to monotonically increase over iterations
of the theoretical CVB. This is due to: 1) each update in Algorithm 7 is guaranteed to
increase the ELBO since they are derived from the exact arg maxF({q}cf) operator,
and 2) the refinement step can keep the current ELBO since the resulting wider
conditionally factorised family includes the latest updated parametric form of {q}cf

as a member (as discussed above), and allows the ELBO to be optimised in a wider
variational family. When all the partitions Pi, i = 1, 2, ..., Nc are fixed, the theoretical
CVB will converge to a local optimum of the problem in (4.1).

Algorithm 7: Theoretical CVB
1 while the ELBO F({q}cf ) not converged do
2 Update qg ← q̃g according to (4.7).
3 for i = 1 : Nc do
4 Refine the Pi if higher accuracy is required.
5 foreach A ∈ Pi do
6 if the density qg(S) = 0 for all S ∈ A then
7 Set qi,A

c , or if A is a singleton set, then set qi
c(Zi|S = u) where

u ∈ A, to an arbitrary distribution.
8 else
9 if A is a singleton set then

10 Update qi
c(Zi|S = u)← q̃i

c(Zi|S = u) where u ∈ A, via (4.10).
11 else
12 Update qi,A

c ← q̃i,A
c via (4.9).

13 end
14 end
15 end
16 end
17 end

We can now see why the theoretical CVB can be guaranteed to improve the
performance of the standard CAVI. As the standard CAVI can be considered as the
CVB with the trivial partitions, when such a CAVI has converged, we can always
refine the partitions within the proposed CVB framework and the ELBO is guaranteed
to monotonically increase again. Therefore, the theoretical CVB with conditionally
everywhere qi

c which assumes the finest partition for all i = 1, 2, ..., Nc is the most
accurate setting of the proposed conditionally factorised family; however, it comes
with the most intensive computations as there can be an infinite number of free-form
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distributions (i.e. qi
c(Z|S = u) for all u ∈ U) to be optimised. On the other hand, the

setwise conditional qi
c offers a flexible trade-off between accuracy and computational

efficiency, i.e. a finer partition Pi can always yield a higher accuracy with more
free-form distributions (i.e. qi,A

c for A ∈ Pi) to be optimised.

4.3 Importance sampling based CVB

The implementation of the theoretical CVB (i.e. Algorithm 7) is highly intractable
except for special cases (e.g. the global variable set S only includes a discrete variable
with finite range of values). The intractability is two-fold, 1) the optimal distribution q̃g

in (4.7) and q̃i,A
c in (4.9) can rarely be evaluated analytically, and 2) it is computationally

prohibitive to evaluate all q̃i,A
c when the partition Pi has too many elements (note that

|Pi| =∞ for conditional everywhere qi
c). Therefore, we will use a Monte Carlo method

to approximate the intractable updates in the theoretical CVB, specifically, we will
attempt to sample the global variable S from the optimal q̃g in (4.7), and these samples
will then be employed to approximate the optimal update for qi

c. As will be shown
later, such a strategy only requires evaluating qi

c(Zi|S) for some particular S, and can
often lead to a closed-form approximation for q̃i,A

c in (4.9) (discussed in Section 4.3.3).
Here the importance sampling technique is employed to carry out the required Monte
Carlo approximation due to its relative efficiency compared to MCMC, and its ability
to estimate the ELBO (as will be demonstrated shortly).

4.3.1 Algorithm

We assume S is a low-dimensional variable such that a standard importance sampling
can effectively carry out the sampling. Note that this framework can be extended to
incorporate a high dimensional S in a sequential Monte Carlo scheme, and this case will
be presented in future. Suppose we have Np particles sampled independently from the
proposal λ(S). We define the particle index set by I = {1, 2, ..., Np}, and denote each
particle as S(p) where p ∈ I. These particles can be uniquely partitioned according to
the partition Pi introduced for a setwise conditional qi

c in Definition 4.2.1. Specifically,
for each A ∈ Pi, the set of labels of the particles that lie in the region A can be denoted
by F (A) = {p ∈ I : S(p) ∈ A}, and the partition of particle index set I which is
resulted from Pi can be denoted by Si = {F (A) : A ∈ Pi ∧ F (A) ̸= ∅}. Note that by
such a construction, we can easily verify that 1) the Si is always a rigorous partition of
the index set I, satisfying the definition of set partition in Remark 1 in Section 4.2.1;
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and 2) the conditional everywhere qi
c which assumes the finest Pi corresponds to the

finest index partition Si = {{p} : p ∈ I}.
Since the optimal global distribution q̃g in (4.7) is known only up to a normalisation

constant, the self-normalised importance sampling is resorted. Define the unnormalised
weight ω̃(S) as the ratio between the unnormalised optimal global distribution q̃g(S)
(i.e. the right hand side of (4.7)) and the proposal λ(S), that is

ω̃(S) =
exp

(
E∏Nc

i=1 qi
c(Zi|S) log p(S,Z, Y )

)
λ(S)∏Nc

i=1 exp
(
Eqi

c(Zi|S) log qi
c(Zi|S)

) . (4.11)

Then for each particle S(p), p ∈ I, its unnormalised weight ω̃(S(p)), which we abbreviate
as ω̃(p), can be computed as follows:

ω̃(p) =
exp

(
E∏Nc

i=1 qi
c(Zi|S(p)) log p(S(p), Z, Y )

)
λ(S(p))∏Nc

i=1 exp
(
Eqi

c(Zi|S(p)) log qi
c(Zi|S(p))

) . (4.12)

By normalising the weight ω∗(p) = ω̃(p)/
∑

p ω̃
(p), we can approximate the q̃g(S) in

(4.7) by an empirical distribution: q̃g(S) ≈ ∑Np

p=1 ω
∗(p)δ(S(p)). The update step for qg

in the theoretical CVB (Algorithm 7) can then be approximated by updating the ω̃(p)

according to (4.12) for all particles S(p).
We now consider the update for qi

c(Zi|S). Instead of evaluating qi
c(Zi|S) for all

possible values of S, we only tackle the associated local distribution qi
c(Zi|S = S(p)) for

each particle S(p) since they are sufficient to calculate the weight in (4.12) to update qg,
and to produce the required posterior approximation, e.g. (4.14). Now for a particular
particle S(p), suppose A is the set member of region partition Pi that includes S(p),
i.e. S(p) ∈ A ∈ Pi, and B is the corresponding set member of index partition Si that
includes p , i.e. p ∈ B ∈ Si. Recall that the optimal distribution q̃i

c(Zi|S = S(p))
can be any distribution if qg(S) = 0 for all A; otherwise depending on whether A is
a singleton set, the optimal q̃i

c(Zi|S = S(p)) is either (4.10) or equal to the q̃i,A
c (Zi)

in (4.9), where the latter is often analytically intractable. Here we approximate the
optimal distribution q̃i

c(Zi|S = S(p)) by q̂i,B
c (Zi) where

q̂i,B
c (Zi) ∝ exp

(∑
j∈B ω̃

(j)Eqi−
c (Zi−|S(j)) log p(S(j), Z, Y )∑

j∈B ω̃(j)

)
, (4.13)

if ∑j∈B ω̃
(j) ̸= 0; otherwise q̂i,B

c (Zi) can be any distribution. Observe that q̂i,B
c in (4.13)

is the exact optimal q̃i
c(Zi|S = S(p)) in (4.10) if qi

c is conditional everywhere and/or
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Algorithm 8: IS-CVB
1 Require: Particles S(p) ∼ λ(S) for all p ∈ I , maximum iteration limit M ,

tolerance threshold ϵ > 0, initial index partitions Si(i = 1, 2, ..., Nc) and initial
distributions {q}cf .

2 Output: ω̃(p), qi
c(Zi|S(p)) for all p ∈ I.

3 for k = 1, 2, ...,M do
4 Update ω̃(p) according to (4.12) for all p ∈ I.
5 Evaluate the estimated ELBO F̂k according to (4.15).
6 if (F̂k − F̂k−1) < ϵ ∧ k ≥ 2 then
7 break
8 end
9 for i = 1, 2, ..., Nc do

10 Refine the Si if higher accuracy is required.
11 for B ∈ Si do
12 if ∑j∈B ω̃

(j) = 0 then
13 Set q̂i,B

c to an arbitrary distribution.
14 else
15 Evaluate q̂i,B

c according to (4.13).
16 end
17 Set qi

c(Zi|S(p))← q̂i,B
c for all p ∈ B.

18 end
19 end
20 end

A = {S(p)} is a singleton set such that B = {p} ; otherwise q̂i,B
c (Zi) in (4.13) is an

approximation of q̃i,A
c (Zi) in (4.9), where the exponent of (4.9) is approximated within

the importance sampling framework. More details about this approximation and the
derivation of (4.13) will be discussed in Section 4.4.2. Additionally, the tractability of
this local update (4.13) will be discussed in Section 4.3.3.

Finally, we summarise the importance sampling based CVB (denoted as IS-CVB)
in Algorithm 8, and the output can be extracted to produce the required approximated
posterior, e.g. the joint distribution p(Z1, Z2) can be approximated as the following
mixture distributions where the dependence between Z1 and Z2 are retained.

p(Z1, Z2) ≈
Np∑
p=1

ω∗(p)q1
c (Z1|S(p))q2

c (Z2|S(p)). (4.14)
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4.3.2 Estimated ELBO

The IS-CVB (Algorithm 8) can offer an estimation of the exact ELBO as a by-product.
Specifically, the exact ELBO can be biasedly estimated by F̂ , which is defined as
follows:

F̂ = log
(

1
Np

Np∑
p=1

ω̃(p)
)
. (4.15)

Theorem 4.3.1. Suppose q1
c , q

2
c , . . . , q

Nc
c are the local variational distributions used to

compute the unnormalised weight ω̃(p) in (4.12), and are also used to compute the exact
optimal distribution q̃g(S) in (4.7). If we further assume that the samples S(p)(p ∈ I)
drawn from λ(S) and employed in (4.12) for calculating the ω̃(p) are independent of the
parametric forms of q1

c , q
2
c , . . . , q

Nc
c , then we have:

E∏Np
p=1 λ(S(p)) exp

(
F̂
)

= exp
(
F
(
q̃g, q

1
c , q

2
c , ..., q

Nc
c

))
,

E∏Np
p=1 λ(S(p))F̂ ≤ F

(
q̃g, q

1
c , q

2
c , ..., q

Nc
c

)
,

where F̂ is the estimated ELBO in (4.15), and F is the exact ELBO defined in (4.2).

The proof is presented in Section 4.4.3. Theorem 4.3.1 suggests that the average
of unnormalised weights is an unbiased estimate of the exponential of exact ELBO,
and F̂ can be viewed as an unbiased estimate of exact ELBO’s lower bound. Similar
ELBO estimators have been used as the optimisation objective and performance metric
in [139–141], where some derived properties also applies to our case, e.g. when Np

is larger, the E∏
p

λ(S(p))F̂ is tighter to the exact ELBO F . The reader is referred to
[139] for details, however note that a major difference in their setting is that they
are optimising the ELBO numerically for the variational distribution with predefined
parametric form rather than using the free-form coordinate ascent update considered
here.

In general, the estimated ELBO F̂k produced by Algorithm 8 does not satisfy
the assumption that samples S(p)(p ∈ I) are independent of the parametric forms of
q1

c , q
2
c , . . . , q

Nc
c . This is because the algorithm uses the same samples S(p)(p ∈ I) to

update q1
c , q

2
c , . . . , q

Nc
c at every iteration. Such a construction introduces extra bias due

to the assumption mismatch when considering F̂k as an estimate of the exact ELBO F ,
but it leads to other useful properties, such as those that will be presented in Theorem
4.3.2 shortly. If one wishes to obtain an estimate that satisfies the assumption in
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Theorem 4.3.1, one can use new samples S(p) for computing ω̃(p) in (4.12) and F̂ in
(4.15).

Note that the exact ELBO F is now intractable as we cannot compute the KL
divergence between a continuous distribution and its particle approximation. Therefore
we will instead monitor the F̂ in (4.15) to assess the convergence. It is well-known that
the monotonically increasing property of the exact ELBO produced by the standard
CAVI can be used to design the algorithm termination condition and to check the
implementation of the algorithm. In fact, the F̂ produced by Algorithm 8 has similar
monotonically increasing and convergent properties, see Theorem 4.3.2. Therefore, a
tolerance threshold of the increment of F̂ is set in Algorithm 8 to determine whether
the convergence is reached. Moreover, it is useful to check whether the F̂ produced by
Algorithm 8 always satisfies F̂k−F̂k−1 ≥ 0 for all k ≥ 2; if not, then the implementation
of Algorithm 8 is incorrect.

Theorem 4.3.2. The estimated ELBO in Algorithm 8 is monotonically increasing
across iterations, i.e. F̂k − F̂k−1 ≥ 0 for all k ≥ 2. Moreover, the sequence (F̂k)k∈N is
convergent if index partitions Si(i = 1, 2, ..., Nc) are fixed after some iteration number.

Remark. Obviously, the convergence of (F̂k)k∈N assumes that Algorithm 8 will not be
terminated (e.g. set M =∞, ϵ < 0) to ensure the existence of the sequence (F̂k)k∈N.

The elaborate proof is presented in Section 4.4.4. Similar to the performance
improvement achieved by the theoretical CVB (Algorithm 7), the IS-CVB (Algorithm
8) can also guarantee a higher F̂ compared to a more standard Monte Carlo-based
mean-field CAVI. The latter can be considered as a special case of Algorithm 8 where
Si = {I} for all i = 1, 2, ..., Nc. When the produced F̂ in such a setting is converged
(convergence is guaranteed by Theorem 4.3.2), we can refine the Si within the proposed
CVB framework. This will increase the F̂ again according to Theorem 4.3.2. The
highest F̂ can be achieved by Si being the finest partition, i.e. the conditional
everywhere qi

c. However, each a conditional everywhere qi
c requires computing Np

free-form variational distributions in Algorithm 8. When the computational power is
limited, the more flexible setwise conditional qi

c is favored as it can achieve a competitive
performance with fewer free-form variational distributions to evaluate by using a wisely
chosen partition Si.
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4.3.3 Tractability of the approximate local update and appli-
cability of IS-CVB

As can be seen in Algorithm 8, the non-trivial computations come only from the weight
calculation in (4.12) and the (approximate) local updates in (4.13). In particular, they
both require the evaluation of expectation with respect to some local distributions
qi

c(Zi|S(p)); and according to the line 13 in Algorithm 8, qi
c(Zi|S(p)) equals to q̂i,B

c for the
corresponding B that satisfy the p ∈ B ∈ Si. This raises concerns about whether the
approximate local updates for q̂i,B

c in (4.13) can yield a distribution with a well-known
parametric form for each B ∈ Si and i = 1, 2, ..., Nc, since if it cannot, computing
expectations with respect to q̂i,B

c would usually be very difficult.
Here we consider a useful and general form for our model p(X, Y ) in which the

approximate local updates of q̂i,B
c in (4.13) can be easily evaluated in a closed form.

Our model assumption for p(X, Y ) is closely related to that of complete conditional in
the exponential family [23], which results in a closed-form expression for the coordinate
ascent update in (4.4) for the classical mean-field CAVI. However, our model assumption
is less restrictive and can ensure the tractability of the algorithm due to the Monte
Carlo approximations for S and the setwise conditional assumptions for qi

c, as will be
shown later.

Suppose that for all S ∈ A where A ∈ Pi, the conditional p(Zi|Zi−, S, Y ) can be
expressed in the exponential family, i.e.

p(Zi|Zi−, S, Y ) ∝ hi,A(Zi) exp
(
ηi,A(Zi−, S, Y )⊤Ti,A(Zi)

)
for all S ∈ A, (4.16)

where hi,A is the base measure, Ti,A is the sufficient statistics, and the natural parameter
ηi,A is a function of the conditioning set {Zi−, S, Y }. Then the parametric form of
q̂i,B

c (Zi) in our local update (4.13) for the corresponding B = {p ∈ I : S(p) ∈ A} (here
B ̸= ∅ is obviously assumed) is the same member in the exponential family. Specifically,



114 Conditionally Factorised Variational Bayes with Importance Sampling

it can be derived as follows

q̂i,B
c (Zi) ∝ exp

(∑
j∈B ω̃

(j)Eqi−
c (Zi−|S(j)) log p(S(j), Z, Y )∑

j∈B ω̃(j)

)

= exp
(∑

j∈B ω̃
(j)Eqi−

c (Zi−|S(j))

[
log p(Zi|Zi−, S

(j), Y ) + log p(Zi−, S
(j), Y )

]
∑

j∈B ω̃(j)

)

= exp
∑j∈B ω̃

(j)Eqi−
c (Zi−|S(j))

[
log hi,A(Zi) + ηi,A(Zi−, S

(j), Y )⊤Ti,A(Zi) + c(Zi−, S
(j), Y )

]
∑

j∈B ω̃(j)


∝ exp

 log hi,A(Zi) +
∑

j∈B ω̃
(j)
[
Eqi−

c (Zi−|S(j))ηi,A(Zi−, S
(j), Y )

]⊤
∑

j∈B ω̃(j) Ti,A(Zi)


=hi,A(Zi) exp
∑j∈B ω̃

(j)
[
Eqi−

c (Zi−|S(j))ηi,A(Zi−, S
(j), Y )

]⊤
∑

j∈B ω̃(j) Ti,A(Zi)
, (4.17)

where c(Zi−, S
(j), Y ) is a function of Zi−, S

(j), Y and is absorbed as a normalisation
constant in the next line. Due to the fact that for all j ∈ B, we have S(j) ∈ A,
the third line in (4.17) can thus be deduced by substituting p(Zi|Zi−, S

(j), Y ) with
(4.16). We can see that q̂i,B

c (Zi) admits the same base measure hi,A(Zi) and sufficient
statistics Ti,A(Zi) as in the original complete conditional p(Zi|Zi−, S, Y ), whilst the
new natural parameter is a weighted summation of Eqi−

c (Zi−|S(j))ηi,A(Zi−, S
(j), Y ), i.e.

the expectations of the original natural parameters. One might anticipate that all of
these expectations can be evaluated analytically once all other local distributions qi−

c

can be updated similarly in the exponential family.
To ensure that the local updates q̂i,B

c (Zi) in (4.13) can be easily evaluated in the
exponential family for all i = 1, 2, ..., Nc and all B ∈ Si no matter what particles
S(p) (p = 1, 2, ..., Np) are drawn, then the assumption (4.16) should apply to all local
variables’ conditional p(Zi|Zi−, S, Y ) (i = 1, 2, ..., Nc) when S ∈ A for each A ∈ Pi.
This requires that the local variables’ conditional p(Zi|Zi−, S, Y ) in our model can be
expressed as follows for each i = 1, 2, ..., Nc:

p(Zi|Zi−, S, Y ) =
∑

A∈Pi

I(S ∈ A)
hi,A(Zi) exp

(
ηi,A(Zi−, S, Y )⊤Ti,A(Zi)

)
∫
hi,A(Zi) exp (ηi,A(Zi−, S, Y )⊤Ti,A(Zi)) dZi

, (4.18)

where the integral in the denominator is the normalisation constant that does not
depend on Zi and ensures the conditional density integrals to 1. We can see that such
a conditional density reduces to the standard exponential family of argument Zi if
hi,A, ηi,A, Ti,A are equal over different A ∈ Pi. This form enables tractable updates in
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the classical mean-field CAVI. Our IS-CVB demonstrates increased applicability as the
model assumption in (4.18) is more general, and this constraint applies only to local
variables Zi, not the global variable S.

Our model assumption in (4.18) also suggests that the refining Pi in Algorithm
8, i.e. adopting a finer partition Pi, will never cause a potential intractability for
updating Zi. In the contrast, a finer partition Pi can only enhance the tractability
of local update. This is because a finer Pi renders the model assumption in (4.18)
more general, encompassing all models that satisfy the previous assumption induced
by a coarser Pi. Such a phenomenon suggests the following approach to wisely select
the global variable S, local variable Zi, and partition Pi (i = 1, 2, ..., Nc), from the
perspective of ensuring the tractability of the IS-CVB: initially, with a global variable
S, one can test various factorised local variables Zi to verify if the model assumption in
(4.18) is satisfied. If not, a finer partition Pi can be attempted for the local variable Zi

that does not meet (4.18). If (4.18) remains unmet, it may be necessary to incorporate
variable Zi into the global variable S. This will bypass the restriction in (4.18) for this
variable, but the dimensions of sampled variable will accordingly increase.

4.4 Detailed derivations

This section presents detailed proofs for three theorems introduced in Section 4.2.2
and 4.3.2, and the derivation for the approximate local update (4.13). First we present
the following lemma that will be frequently used in this thesis.

Lemma 4.4.1. Let X ∈ Rd be a random variable, and q(X) be a probability distribution
of it. Suppose f : Rd → R is a function of X such that

∫
Rd exp (f(X)) dX <∞, then

we have

Eq(X) [− log q(X) + f(X)] = −KL(q(X)||f̌(X)) + c, (4.19)

where f̌(X) is another density function of X, and c is a constant that does not depend
on X. Both are defined below:

f̌(X) = exp (f(X))∫
Rd exp (f(X)) dX , (4.20)

c = log
∫
Rd

exp (f(X)) dX. (4.21)
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Remark 1. The random variable X can be discrete, continuous or mixed type, and the
distribution q(X) should be interpreted as PMF and generalised PDF accordingly. The
integral in (4.20) and (4.21) should be replaced by summation if X is discrete variable.

Remark 2. The sufficient condition
∫
Rd exp (f(X)) dX <∞ is placed in Lemma in order

to ensure the distribution f̌(X) constructed in (4.20) is always valid. This condition
rules out cases where exp (f(X)) cannot be normalised to be a valid density, such as
when f(X) = X.

Proof. By direct rewriting Eq(X) [− log q(X) + f(X)], we have

Eq(X) [− log q(X) + f(X)] = Eq(X) [− log q(X) + log exp(f(X))]

=Eq(X)

[
− log q(X) + log exp(f(X))∫

Rd exp (f(X)) dX + log
∫
Rd

exp (f(X)) dX
]
. (4.22)

Since exp (f(X)) is non-negative, and by definition, the integral
∫
Rd exp (f(X)) dX is

finite, we can then construct a density function by normalising exp (f(X)) to satisfy
the condition that it integrates to 1. Such a construction leads to the density function
f̌(X) defined in (4.20). Subsequently, (4.22) can be expressed as

Eq(X) [− log q(X) + f(X)] = Eq(X)

[
− log q(X) + log f̌(X) + log

∫
Rd

exp (f(X)) dX
]

=Eq(X)
[
− log q(X) + log f̌(X)

]
+ log

∫
Rd

exp (f(X)) dX

=−KL(q(X)||f̌(X)) + c, (4.23)

where the last line is obtained by using the definition of KL divergence and c defined
in (4.21).

This Lemma 4.4.1 will be frequently employed in our derivation, and we will always
check whether the requirement

∫
Rd exp (f(X)) dX <∞ is satisfied in order to ensure

the distribution f̌(X) in (4.20) always exists and Lemma can be employed safely.

4.4.1 Proof of Theorem 4.2.1

Here we present the proof for Theorem 4.2.1 on page 105. In this section, Eqg

serves as a shorthand for Eqg(S) to make the formula more compact. Denote the
optimal global distribution by q̃g(S) = arg maxqg

F({q}cf ), and the optimal qi
c(Zi|S)

by q̃i
c(Zi|S) = arg maxqi

c
F({q}cf ) for i = 1, 2, ..., Nc. In adherence to the convention
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established in Theorem 4.2.1, the integral employed within this section is similarly
generalised: if the associated variable is discrete, it should be substituted with a
summation.

4.4.1.1 Derivation of the optimiser q̃g

We first prove (4.7). Rewrite the ELBO F({q}cf ) by substituting (4.5) into (4.2),

F({q}cf ) =EqgE∏Nc
i=1 qi

c(Zi|S) log p(X, Y )∏Nc
i=1 q

i
c(Zi|S)

− Eqg log qg(S)

=Eqg

[
E∏Nc

i=1 qi
c(Zi|S) log p(X|Y )∏Nc

i=1 q
i
c(Zi|S)

− log qg(S)
]

+ log p(Y ). (4.24)

In order to apply Lemma 4.4.1, we first need to verify that the following integral is
finite:

∫
U

exp
(

E∏Nc
i=1 qi

c(Zi|S) log p(X|Y )∏Nc
i=1 q

i
c(Zi|S)

)
dS. (4.25)

Note that by Jensen’s inequality, we have

E∏Nc
i=1 qi

c(Zi|S) log p(X|Y )∏Nc
i=1 q

i
c(Zi|S)

≤ log E∏Nc
i=1 qi

c(Zi|S)
p(X|Y )∏Nc

i=1 q
i
c(Zi|S)

=
∫
p(Z1, Z2, ..., ZNc , S|Y )dZ1dZ2...dZNc

= log p(S|Y ). (4.26)

Then, since the integrand in (4.25) is non-negative, and exp(·) is monotonically in-
creasing, we have

∫
U

exp
(

E∏Nc
i=1 qi

c(Zi|S) log p(X|Y )∏Nc
i=1 q

i
c(Zi|S)

)
dS ≤

∫
U

exp (log p(S|Y )) dS = 1, (4.27)

which is a finite number. We can then conclude that the integral in (4.25) is finite, and
safely apply Lemma 4.4.1 to express the ELBO in (4.24) as

F({q}cf ) =Eqg

[
E∏Nc

i=1 qi
c(Zi|S) log p(X|Y )∏Nc

i=1 q
i
c(Zi|S)

− log qg(S)
]

+ log p(Y )

=−KL(qg(S)||p̃(S)) + c+ log p(Y ), (4.28)



118 Conditionally Factorised Variational Bayes with Importance Sampling

p̃(S) = exp
(

E∏Nc
i=1 qi

c(Zi|S) log p(X|Y )∏Nc
i=1 q

i
c(Zi|S)

)
1

exp(c)

=
exp

(
E∏Nc

i=1 qi
c(Zi|S) log p(X|Y )

)
∏Nc

i=1 exp
(
Eqi

c(Zi|S) log qi
c(Zi|S)

) 1
exp(c) , (4.29)

c = log
∫

U
exp

(
E∏Nc

i=1 qi
c(Zi|S) log p(X|Y )∏Nc

i=1 q
i
c(Zi|S)

)
dS ≤ 0. (4.30)

where c is a log normalisation factor which does not depend on S. Moreover, when
all qi

c are fixed, c is a constant. Using (4.28) and the fact that p(Y ) is a constant that
does not depend on qg, we have

q̃g(S) = arg max
qg

F({q}cf ) = arg max
qg

(−KL(qg(S)||p̃(S))) .

With the definition that qg is free-form, qg can take any parametric form. Hence
qg(S) = p̃(S), which minimises the KL divergence above, is the unique solution for the
optimal p̃(S), i.e.

q̃g(S) = p̃(S) ∝
exp

(
E∏Nc

i=1 qi
c(Zi|S) log p(X|Y )

)
∏Nc

i=1 exp
(
Eqi

c(Zi|S) log qi
c(Zi|S)

) . (4.31)

This optimiser in (4.31), by multiplying a constant p(Y ), concurs with (4.7) in Theorem
4.2.1. Thus, we have successfully derived the unique optimiser q̃g(S) in Theorem 4.2.1.

We now start to derive the optimiser q̃i
c(Zi|S) in Theorem 4.2.1. First, we rewrite

the ELBO F({q}cf ) in equation (4.24) as:

F({q}cf ) = EqgEqi
c(Zi|S)

(
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )− log qi
c(Zi|S)

)
+ EqgEqi−

c (Zi−|S)p(Zi−, S, Y )− Eqg log qg(S)− EqgEqi−
c (Zi−|S) log qi−

c (Zi−|S),
(4.32)

where

qi−
c (Zi−|S) =


∏

l ̸=i q
l
c(Zl|S) Nc > 1

1 Nc = 1

Eqi−
c (Zi−|S)[·] =


∫
[·]∏l ̸=i q

l
c(Zl|S)dZi− Nc > 1

[·] Nc = 1



4.4 Detailed derivations 119

Notice the last three terms in (4.32) are constants when qg and qi−
c are fixed, hence we

have

q̃i
c(Zi|S) = arg max

qi
c

F({q}cf ) = arg max
qi

c

EqgF (S, qc), (4.33)

where we define

F (S, qc) =Eqi
c(Zi|S)

(
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )− log qi
c(Zi|S)

)
.

4.4.1.2 Derivation of the setwise conditional optimiser q̃i
c

We now derive the setwise conditional q̃i
c and prove (4.9). Note that EqgF (S, qc) in

(4.33) can be expressed as follows by using (4.6) in the Definition 4.2.1 on page 104,

EqgF (S, qc)

=Eqg

∫ ∑
A∈Pi

qi,A
c (Zi)I(S ∈ A)

[
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )− log
∑

B∈Pi

qi,B
c (Zi)I(S ∈ B)

]
dZi

=Eqg

∫ ∑
A∈Pi

qi,A
c (Zi)I(S ∈ A)

[
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )−
∑

B∈Pi

I(S ∈ B) log qi,B
c (Zi)

]
dZi

=Eqg

∫ ∑
A∈Pi

qi,A
c (Zi)I(S ∈ A)

[
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )− log qi,A
c (Zi)

]
dZi

=Eqg

∑
A∈Pi

Eqi,A
c (Zi)I(S ∈ A)

[
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )− log qi,A
c (Zi)

]
=
∑

A∈Pi

Eqi,A
c (Zi)

∫
U
qg(S)I(S ∈ A)

[
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )− log qi,A
c (Zi)

]
dS

=
∑

A∈Pi

Eqi,A
c (Zi)

∫
A
qg(S)

[
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )− log qi,A
c (Zi)

]
dS

=
∑

A∈Pi

Eqi,A
c (Zi)

[∫
A
qg(S)Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )dS −
(∫

A
qg(S)dS

)
log qi,A

c (Zi)
]
,

(4.34)

where the third equality is obtained by noting that each element in the partition
Pi is disjoint with each other, i.e. I(S ∈ A)I(S ∈ B) is 1 when A = B, and zero
otherwise. The second equality is obtained from the fact that log∑B∈Pi

qi,B
c (Zi)I(S ∈

B) equals to ∑B∈Pi
I(S ∈ B) log qi,B

c (Zi). To see this, first recall that S has support
U , and Pi is a partition of U . Let’s represent the elements of Pi as V1, V2, ..., VN (i.e.
Pi = {V1, V2, ..., VN} where N may be infinite), then Pi is a partition of U implies
(from Remark 1 of Definition 4.2.1) that ⋃j=1,2,...,N Vj = Pi, and Vj

⋂
Vk = ∅ if j ̸= k.
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This ensures that no matter what value S takes, S will belong to only one of the
Vj sets and to no other element in Pi at the same time. Then we can find both of
log∑B∈Pi

qi,B
c (Zi)I(S ∈ B) and ∑B∈Pi

I(S ∈ B) log qi,B
c (Zi) can be exactly rewritten

as the same step function in (4.35) that depends on the values of S, i.e.

log
∑

B∈Pi

qi,B
c (Zi)I(S ∈ B) = log

∑
B∈{V1,V2,...,VN }

qi,B
c (Zi)I(S ∈ B)

=



log qi,V1
c (Zi), if S ∈ V1;

log qi,V2
c (Zi), if S ∈ V2;

... ...

log qi,VN
c (Zi), if S ∈ VN .

(4.35)

=
∑

B∈{V1,V2,...,VN }
I(S ∈ B) log qi,B

c (Zi)

=
∑

B∈Pi

I(S ∈ B) log qi,B
c (Zi).

Therefore, log∑B∈Pi
qi,B

c (Zi)I(S ∈ B) equals to ∑B∈Pi
I(S ∈ B) log qi,B

c (Zi), and the
second equality of (4.34) is proved.

We can see from (4.34) that each qi,A
c only appears in one summand, and each

summand only involves one qi,A
c . Furthermore, if there exists some A ∈ Pi such that

qg(S) = 0 for all S ∈ A, then clearly the summands that correspond to those A will
always be zero regardless of the parametric form of qi,A

c . This is because for these
summands, both terms in the bracket in (4.34) will always be zero. This motives us to
continue writing (4.34) as

EqgF (S, qc)

=
∑

A∈Pi

Eqi,A
c (Zi)

[∫
A
qg(S)Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )dS −
(∫

A
qg(S)dS

)
log qi,A

c (Zi)
]

=
∑

A∈Pg
i

Eqi,A
c (Zi)

[∫
A
qg(S)Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )dS −
(∫

A
qg(S)dS

)
log qi,A

c (Zi)
]

=
∑

A∈Pg
i

(∫
A
qg(S)dS

)
Eqi,A

c (Zi)

∫A qg(S)Eqi−
c (Zi−|S) log p(Zi|Zi−, S, Y )dS∫

A qg(S)dS − log qi,A
c (Zi)


(4.36)
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where Pg
i is the set that only includes the partition set A such that qg(S) is not always

zero for all S ∈ A, i.e.

Pg
i = {A ∈ Pi : (∃S ∈ A)[qg(S) ̸= 0]}, (4.37)

The first term in the bracket of (4.36) can be finite even if the denominator
∫

A qg(S)dS
is infinitesimal. This is because we can always rewrite it as∫

A qg(S)Eqi−
c (Zi−|S) log p(Zi|Zi−, S, Y )dS∫

A qg(S)dS

=
∫

U

qg(S)I(S ∈ A)∫
A qg(S)dS Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )dS

=
∫

U
qA

g (S)Eqi−
c (Zi−|S) log p(Zi|Zi−, S, Y )dS = EqA

g qi−
c (Zi−|S) log p(Zi|Zi−, S, Y ), (4.38)

where qA
g (S) is a ‘normalised’ global density defined below,

qA
g (S) = qg(S)∫

A qg(S)dS I(S ∈ A). (4.39)

We can check qA
g (S) is a valid density over the domain U by the assumption that qg(S)

is not always 0 for all S ∈ A. Specifically, qA
g (S) is non-negative and integrates to 1.

Now, in order to use Lemma 4.4.1 to optimise the EqgF (S, qc) in (4.36), we need to
check the following integral is finite

∫
exp

(∫
A qg(S)Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )dS∫
A qg(S)dS

)
dZi. (4.40)
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By using (4.38), we have

∫
exp

(∫
A qg(S)Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )dS∫
A qg(S)dS

)
dZi

=
∫

exp
(
EqA

g qi−
c (Zi−|S) log p(Zi|Zi−, S, Y )

)
dZi.

=
∫

exp
(

EqA
g qi−

c (Zi−|S) log p(Zi, Zi−, S|Y )
qA

g (S)qi−
c (Zi−|S)

qA
g (S)qi−

c (Zi−|S)
p(Zi−, S|Y )

)
dZi

=
∫

exp
(

EqA
g qi−

c (Zi−|S) log
qA

g (S)qi−
c (Zi−|S)

p(Zi−, S|Y ) + EqA
g qi−

c (Zi−|S) log p(Zi, Zi−, S|Y )
qA

g (S)qi−
c (Zi−|S)

)
dZi

= exp
(
KL

(
qA

g (S)qi−
c (Zi−|S)||p(Zi−, S|Y )

)) ∫
exp

(
EqA

g qi−
c (Zi−|S) log p(Zi, Zi−, S|Y )

qA
g (S)qi−

c (Zi−|S)

)
dZi

≤ exp
(
KL

(
qA

g (S)qi−
c (Zi−|S)||p(Zi−, S|Y )

)) ∫
exp

(
log EqA

g qi−
c (Zi−|S)

p(Zi, Zi−, S|Y )
qA

g (S)qi−
c (Zi−|S)

)
dZi

= exp
(
KL

(
qA

g (S)qi−
c (Zi−|S)||p(Zi−, S|Y )

)) ∫ ∫ ∫
p(Zi, Zi−, S|Y )dSdZi−dZi

= exp
(
KL

(
qA

g (S)qi−
c (Zi−|S)||p(Zi−, S|Y )

))
, (4.41)

where the inequality is obtained similarly as in (4.27), i.e. by using Jensen’s inequity,
the fact that integrand is non-negative, and the exp(·) is monotonically increasing.
Equation (4.41) suggests that, the integral in (4.40) is bounded above by the expo-
nential of the KL divergence between variational distribution qA

g (S)qi−
c (Zi−|S) and

exact posterior p(Zi−, S|Y ). By following the standard routine of coordinate as-
cent update, the qA

g (S)qi−
c (Zi−|S) will put zero probability mass in regions where

the exact posterior p(Zi−, S|Y ) has zero probability mass, and subsequently, the
KL

(
qA

g (S)qi−
c (Zi−|S)||p(Zi−, S|Y )

)
is typically finite. Therefore, we can safely apply

Lemma 4.4.1 to rewrite the objective function in (4.36) as

EqgF (S, qc)

=
∑

A∈Pg
i

(∫
A
qg(S)dS

)
Eqi,A

c (Zi)

∫A qg(S)Eqi−
c (Zi−|S) log p(Zi|Zi−, S, Y )dS∫

A qg(S)dS − log qi,A
c (Zi)


=
∑

A∈Pg
i

(∫
A
qg(S)dS

) [
−KL

(
qi,A

c (Zi)||p̃A(Zi)
)

+ cA

]
, (4.42)
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where

p̃A(Zi) ∝ exp
(∫

A qg(S)Eqi−
c (Zi−|S) log p(Zi|Zi−, S, Y )dS∫

A qg(S)dS

)
, (4.43)

cA = log
∫

exp
(∫

A qg(S)Eqi−
c (Zi−|S) log p(Zi|Zi−, S, Y )dS∫

A qg(S)dS

)
dZi

≤ KL
(
qA

g (S)qi−
c (Zi−|S)||p(Zi−, S|Y )

)
, (4.44)

Now, we are able to consider the optimisation of EqgF (S, qc) in (4.42), which is required
in the optimal q̃i

c(Zi|S) in (4.33). Recall that by the definition of setwise conditional
qi,A

c , the optimal q̃i
c(Zi|S) in (4.33) can always be expressed as

q̃i
c(Zi|S) = arg max

qi
c

F({q}cf ) = arg max
qi

c

EqgF (S, qc) =
∑

A∈Pi

q̃i,A
c (Zi)I(S ∈ A), (4.45)

where each q̃i,A can be chosen freely with no relationship with each other. This
expression of q̃i

c(Zi|S) in (4.45) matches (4.8) in Theorem 4.2.1. Now, since the value of
EqgF (S, qc) in (4.42) does not depend on the qi,A

c when A /∈ Pg
i , the optimal distribution

q̃i,A
c for all A ∈ Pi \ Pg

i can take any form, since its specific parametric form has no
impact on the value of ELBO. Therefore, by using the definition in (4.37), we have
the conclusion in Theorem 4.2.1, i.e. q̃i,A

c (Zi) can be any distribution if the density
qg(S) = 0 for all S ∈ A.

For other A such that A ∈ Pg
i , the specific form of qi,A

c may indeed affect the
value of EqgF (S, qc) in (4.42), and hence a careful optimisation is needed. First note
that each summand in (4.42) only involves a unique qi,A

c , then the optimisation for
each summand can be carried out independently. Furthermore, each summand is
a non-negative constant

∫
A qg(S)dS times a function of qi,A

c in the bracket of (4.42).
Therefore, when each bracket achieves the maximum, each summand in (4.42) also
reaches the maximum, and their sum EqgF (S, qc) must also be maximised. Hence
a solution (not necessarily a unique solution) to the optimisation in (4.45) can be
obtained by independently optimising each bracket in (4.42). This leads to each q̃i,A

c (Zi)
in (4.45) being

q̃i,A
c (Zi) = arg max

qi,A
c

[
−KL

(
qi,A

c (Zi)||p̃A(Zi)
)

+ cA

]

=p̃A(Zi) ∝ exp
(∫

A qg(S)Eqi−
c

log p(Zi|Zi−, S, Y )dS∫
A qg(S)dS

)
,

(4.46)
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where we substitute (4.43) to obtain the final result. The second equality in (4.46) is
obtained because the parametric form of qi,A

c (Zi) can be freely chosen by definition,
and hence it has to equals to p̃A(Zi) to minimise the KL divergence. At last, by noting
that the final result in (4.46) equals the right hand side of (4.9) on page 106 up to a
multiplicative constant, i.e.

q̃i,A
c (Zi) ∝ exp

(∫
A qg(S)Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )dS∫
A qg(S)dS

)

= exp
(∫

A qg(S)Eqi−
c (Zi−|S) log p(X, Y )dS∫

A qg(S)dS

)
exp

(
−
∫

A qg(S)Eqi−
c (Zi−|S) log p(Zi−, S, Y )dS∫

A qg(S)dS

)

∝ exp
(∫

A qg(S)Eqi−
c (Zi−|S) log p(X, Y )dS∫

A qg(S)dS

)
,

we reach the conclusion in Theorem 4.2.1: for A ∈ Pg
i , namely, for A such that qg(S) is

not constantly 0 when S ∈ A, the optimal q̃i,A
c in (4.9) serves as the required optimiser

in (4.8).

Uniqueness of the optimiser q̃i
c It is noted that such an optimiser q̃i,A

c (Zi) in (4.46)
or (4.9) is not necessarily unique for A ∈ Pg

i . Specifically, from (4.42), each summand
contributes a product of a non-negative constant

∫
A qg(S)dS and the function inside

the bracket to the value of the objective function EqgF (S, qc). When this constant,∫
A qg(S)dS, is a positive real number (not infinitesimal), a larger value of its multiplier

(i.e. the function in the bracket) always results in a non-negligible, positive increase in
EqgF (S, qc).

As a result, all qi,A
c in (4.42) that are associated with positive

∫
A qg(S)dS must be

optimised as in (4.46) in order to maximise the objective function EqgF (S, qc). This
leads to the conclusion found in Remark 2 of Theorem 4.2.1: for A ∈ Pi such that∫

A qg(S)dS is positive (not infinitesimal), the optimiser q̃i,A
c (Zi) in (4.9) is unique.

On the other hand, if the constant
∫

A qg(S)dS (A ∈ Pg
i ) in (4.42) is infinitesimal,

e.g. when A is a singleton set and qg(S) is positive at that value, the uniqueness of the
optimiser q̃i,A

c (Zi) becomes more complex. In such a scenario, varying values of the
function inside the bracket, when multiplied by such an infinitesimal constant, seem
to have a negligible effect on the objective function’s value. This is especially true
when compared to other summands in (4.42) that are associated with an non-negligible
positive constant

∫
A qg(S)dS.

Therefore, if the cardinality of partition Pi is countable, which implies that the
number of summands in (4.42) must also be countable, an arbitrary distribution may
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be assigned to the optimal q̃i,A
c for A ∈ Pi such that

∫
A qg(S)dS is zero or infinitesimal.

This is because their impact on the ELBO’s value is negligible when compared to other
summands in (4.42) that are associated with a positive

∫
A qg(S)dS.

However, it is important to acknowledge that when there are infinite number of
summands in (4.42), e.g. when qi

c is conditional everywhere, the summands in (4.42)
that may appear negligible could still significantly impact the value of EqgF (S, qc)
when combined. Consequently, a cautious approach for optimising the ELBO is to
consistently employ the optimiser q̃i,A

c in (4.46) or (4.9) for A ∈ Pg
i , although some of

these optimisers may not be essential for specific partitions Pi.

4.4.1.3 Derivation of the conditional everywhere optimiser q̃i
c

We now derive the optimiser q̃i
c for conditional everywhere qi

c and prove (4.10) on page
106. First note that EqgF (S, qc) in (4.33) is

EqgF (S, qc) =
∫

U
qg(S)F (S, qc)dS. (4.47)

F (S, qc) =Eqi
c(Zi|S)

(
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )− log qi
c(Zi|S)

)
. (4.48)

Moreover, the conditional everywhere assumption allows qi
c(Zi|S) to be determined

independently for every different S ∈ U . Then for all u ∈ U such that qg(S = u) = 0,
the parametric form of qi

c(Zi|S = u) will not affect the value of EqgF (S, qc) since the
integrand in (4.47) will always be zero at those points. Therefore, qi

c(Zi|S = u) can be
any distribution for all u ∈ U such that qg(S = u) = 0, which agrees with Theorem
4.2.1.

Furthermore, when the maximum of F (S, qc) is achieved for all S ∈ U , by mul-
tiplying a non-negative constant qg(S), the integrand in (4.47) also achieves the
maximum for every S ∈ U , and hence the objective function EqgF (S, qc) in (4.47) is
also maximised (since the integrand is maximised at every point). This suggests that
one solution (not necessarily a unique one) for the conditional everywhere optimiser
q̃i

c(Zi|S) = arg maxqi
c
EqgF (S, qc) in (4.33) is

q̃i
c(Zi|S = u) = arg max

qi
c(Zi|S=u)

F (S = u, qc). (4.49)
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Now in order to rewrite the (4.48) with Lemma 4.4.1, we follow the similar procedure
in (4.41) to check the following integral is finite:∫

exp
(
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )
)
dZi

=KL(qi−
c (Zi−|S)||p(Zi−|S, Y ))

∫
exp

(
Eqi−

c (Zi−|S) log p(Zi, Zi−|S, Y )
qi−

c (Zi−|S)

)
dZi

≤KL(qi−
c (Zi−|S)||p(Zi−|S, Y )), (4.50)

which is usually finite if qi−
c are obtained following the standard routine of coordinate

ascent update. Here we skip the detailed derivation of (4.50) and the discussion of
the finiteness of the KL divergence in (4.50), since they are similar to those for (4.41).
Now we can employ Lemma 4.4.1 to rewrite (4.48) as

F (S, qc) =Eqi
c(Zi|S)

(
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )− log qi
c(Zi|S)

)
=−KL(qi

c(Zi|S)||p̃S(Zi|S)) + cS (4.51)
p̃S(Zi|S) ∝ exp

(
Eqi−

c (Zi−|S) log p(Zi|Zi−, S, Y )
)
, (4.52)

where cS is a constant that does not depend on qc or Zi, and can be computed similarly
as in (4.44). Now, by using (4.51) and (4.52), the optimiser q̃i

c in (4.49) is

q̃i
c(Zi|S = u) = arg max

qi
c(Zi|S=u)

F (S = u, qc)

= arg max
qi

c(Zi|S=u)

(
−KL(qi

c(Zi|S = u)||p̃S(Zi|S = u)) + cS

)
=p̃S(Zi|S = u) ∝ exp

(
Eqi−

c (Zi−|S=u) log p(Zi|Zi−, S = u, Y )
)
,

∝ exp
(
Eqi−

c (Zi−|S=u) log p(Z, S = u, Y )
)
, (4.53)

where the third line is obtained since qi
c(Zi|S = u) can be chosen freely by the

conditional everywhere assumption. The last line in (4.53) is obtained by multiplying
the constant Eqi−

c
log p(Zi−, S = u, Y ) to the third line. At last, by combining the

result in (4.53), and our previous conclusion that qi
c(Zi|S = u) can be any distribution

for all u ∈ U such that qg(S = u) = 0, we obtain the conditional everywhere optimiser
stated in Theorem 4.2.1.
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4.4.2 Detailed derivation of the approximate local update

Here, we show the details how the importance sampling is employed in the local update
in (4.13) for approximating (4.9) on page 106. First, we rewrite the optimal update
for q̃i,A

c (Zi) in (4.9) as follows

q̃i,A
c (Zi) ∝ exp

(∫
A qg(S)Eqi−

c (Zi−|S) log p(X, Y )dS∫
A qg(S)dS

)

= exp
(∫

U I(S ∈ A)qg(S)Eqi−
c (Zi−|S) log p(X, Y )dS∫

U I(S ∈ A)qg(S)dS

)

= exp
(∫

U λ(S)I(S ∈ A)Cqg(S)
λ(S) Eqi−

c (Zi−|S) log p(X, Y )dS∫
U λ(S)I(S ∈ A)Cqg(S)

λ(S) dS

)
, (4.54)

where C can be an arbitrary constant. Recall that this optimal iterative update for
q̃i,A

c (Zi) in Algorithm 7 is carried out with the recently updated qg in (4.7), in which
case we have qg(S) ∝ ω̃(S)λ(S), with the unnormalised weight ω̃(S) being defined
in (4.11). We can chose the C in (4.54) as the normalisation constant such that
Cqg(S)

λ(S) = ω̃(S). Subsequently, the optimal update for q̃i,A
c (Zi) in (4.54) is

q̃i,A
c (Zi) ∝ exp

(∫
U λ(S)I(S ∈ A)ω̃(S)Eqi−

c (Zi−|S) log p(X, Y )dS∫
U λ(S)I(S ∈ A)ω̃(S)dS

)
. (4.55)

Now, with Np particles S(p) (p ∈ I = {1, 2, ..., Np}) independently drawn from the
proposal λ(S), the numerator and denominator inside the exponent in (4.55) can be
respectively approximated with Monte Carlo methods as follows,∫

U
λ(S)I(S ∈ A)ω̃(S)Eqi−

c (Zi−|S) log p(X, Y )dS

≈ 1
Np

Np∑
p=1

I(S(p) ∈ A)ω̃(p)Eqi−
c (Zi−|S(p)) log p(S(p), Z, Y )

= 1
Np

∑
j∈B

ω̃(j)Eqi−
c (Zi−|S(j)) log p(S(j), Z, Y ), (4.56)

∫
U
λ(S)I(S ∈ A)ω̃(S)dS ≈

Np∑
p=1

I(S(p) ∈ A)ω̃(j)

= 1
Np

∑
j∈B

ω̃(j) (4.57)
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where B = {p ∈ I : S(p) ∈ A} and ω̃(p) is given in (4.12). Naturally, these approxima-
tions require that B ̸= ∅. Substituting these two approximations into (4.55) yields our
approximated update q̂i,B

c in (4.13).

4.4.3 Proof of Theorem 4.3.1

Here we present the proof for Theorem 4.3.1 on page 111. Note from (4.28) that

F
(
q̃g, q

1
c , q

2
c , ..., q

Nc
c

)
=−KL(q̃g(S)||p̃(S)) + c+ log p(Y )

=c+ log p(Y ),
(4.58)

where the last equality follows since q̃g(S) is the exact optimal global distribution
computed in (4.7) as stated in Theorem 4.3.1, and we have demonstrated that q̃g(S) =
p̃(S) in (4.31). The constant c can be computed according to (4.30):

exp(c) =
∫

U

exp
(

E∏Nc
i=1 qi

c(Zi|S) log p(X|Y )
)

∏Nc
i=1 exp

(
Eqi

c(Zi|S) log qi
c(Zi|S)

)dS, (4.59)

where U is the domain of S. By using (4.15) and (4.12) on pages 111 and 109,
respectively, we have

E∏Np
p=1 λ(S(p)) exp

(
F̂
)

=E∏Np
p=1 λ(S(p))

1
Np

Np∑
p=1

ω̃(p) = Eλ(S(1))ω̃
(1)

=Eλ(S(1))

exp
(

E∏Nc
i=1 qi

c(Zi|S(1)) log p(Z, S(1), Y )
)

λ(S(1))∏Nc
i=1 exp

(
Eqi

c(Zi|S(1)) log qi
c(Zi|S(1))

)

=
∫

U

exp
(

E∏Nc
i=1 qi

c(Zi|S(1)) log p(Z, S(1), Y )
)

∏Nc
i=1 exp

(
Eqi

c(Zi|S(1)) log qi
c(Zi|S(1))

) dS(1)

= exp(c)p(Y ) = exp
(
F
(
q̃g, q

1
c , q

2
c , ..., q

Nc
c

))
, (4.60)
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where the last line is obtained by using (4.59) and (4.58). Subsequently, by using
Jensen’s inequality and (4.60) we have

E∏Np
p=1 λ(S(p))

(
F̂
)
≤ log

(
E∏Np

p=1 λ(S(p)) exp
(
F̂
))

=F
(
q̃g, q

1
c , q

2
c , ..., q

Nc
c

)
.

This inequality and (4.60) together fulfill both results outlined in Theorem 4.3.1, thus
completing the proof.

4.4.4 Proof of Theorem 4.3.2

Here we prove Theorem 4.3.2 on page 112. Note that the IS-CVB described in
Algorithom (8) is deterministic since they are recursively carried out with the same
previously drawn samples S(p)(p ∈ I). We will first show that 1) such deterministic
updates essentially perform a deterministic theoretic CVB (Algorithm 7) for a modified
target distribution (denoted as p̌(·)), for which a modified ELBO (denoted as L) is
guaranteed to increase across iterations; and 2) the estimated ELBO F̂ computed
in Algorithm 8 is equal to this modified ELBO L up to a constant. These two facts
imply that the sequence (F̂k)k∈N is also monotonically increasing. Finally, we show the
convergence of (F̂k)k∈N by verifying F̂ is bounded above.

We now prove the first part. Define J ∈ I = {1, 2, ..., Np} as a discrete random
variable, and a modified joint target distribution p̌ for variables J, Z, Y satisfying

p̌(J, Z, Y ) ∝ p(S(J), Z, Y )
λ(S(J)) , (4.61)

where variables S,Z, Y and the exact distribution p have the same definition as in
Section 4.2.1; S(J) is the J-th previously drawn sample (from the proposal λ) used in
Algorithm 8. This definition in (4.61) suggests that the modified joint distribution can
be exactly evaluated as

p̌(J, Z, Y ) = p(S(J), Z, Y )
λ(S(J))

Np∑
p=1

p(S(p))
λ(S(p))

−1

. (4.62)
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We will approximate p̌(J, Z|Y ) by the following conditionally factorised variational
distribution r(J, Z):

r(J, Z) =rg(J)
Nc∏
i=1

ri
c(Zi|J),

ri
c(Zi|J) =

∑
B∈Si

ri,B
c (Zi)I(J ∈ B),

(4.63)

for i = 1, 2, ..., Nc, where ri
c is assumed to be setwise conditional on the partition Si.

Note that we assume the partitions Si (i = 1, 2, ..., Nc) are the same particle index
partitions used in Algorithm 8. We now define the following modified ELBO L:

L = E
rg(J)

∏Nc
i=1 ri

c(Zi|J) log p̌(J, Z, Y )
rg(J)∏Nc

i=1 r
i
c(Zi|J)

, (4.64)

where we can see L is a standard ELBO similar to (4.2) where the exact distribution
and variational distribution are now p̌ and r. The optimisation of this modified ELBO
with respect to the conditionally factorised variational family {r}cf in (4.63) can be
carried out with our theoretical CVB (Algorithm 7). We now derive coordinate ascent
optimisers according to Theorem 4.2.1.

Specifically, the optimal variational updates for rg in (4.7) is:

r̃g(J) ∝ exp
(

E∏Nc
i=1 ri

c(Zi|J) log p̌(J, Z, Y )∏Nc
i=1 r

i
c(Zi|J)

)

= exp
E∏Nc

i=1 ri
c(Zi|J) log p(S(J), Z, Y )

λ(S(J))∏Nc
i=1 r

i
c(Zi|J)

− log
Np∑
p=1

p(S(p))
λ(S(p))


∝ exp

(
E∏Nc

i=1 ri
c(Zi|J) log p(S(J), Z, Y )

λ(S(J))∏Nc
i=1 r

i
c(Zi|J)

)

=
exp

(
E∏Nc

i=1 ri
c(Zi|J) log p(S(J), Z, Y )

)
λ(S(J))∏Nc

i=1 exp
(
Eri

c(Zi|J) log ri
c(Zi|J)

) = f(J), (4.65)

where the second line is obtained by using (4.62); and we define f(J) as

f(J) =
exp

(
E∏Nc

i=1 ri
c(Zi|J) log p(S(J), Z, Y )

)
λ(S(J))∏Nc

i=1 exp
(
Eri

c(Zi|J) log ri
c(Zi|J)

) . (4.66)
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Note that (4.65) also suggests that r̃g(J) can be computed as follows

r̃g(J) = f(J)∑Np

J=1 f(J)
. (4.67)

According to Theorem 4.2.1 and (4.9), the optimal distribution for ri
c can be expressed

as follows,

r̃i
c(Zi|J) =

∑
B∈Si

r̃i,B
c (Zi)I(J ∈ B),

where r̃i,B
c (Zi) can be any distribution if ∑J∈B rg(J) = 0; otherwise r̃i,B

c (Zi) is

r̃i,B
c (Zi) ∝ exp

∑J∈B rg(J)Eri−
c (Zi− |J) log p̌(J, Z, Y )∑
J∈B rg(J)


=exp


∑

J∈B rg(J)Eri−
c (Zi− |J) log p(S(J), Z, Y )∑

J∈B rg(J) −
∑

J∈B rg(J) log λ(S(J))∑Np

p=1
p(S(p))
λ(S(p))∑

J∈B rg(J)


∝exp

∑J∈B rg(J)Eri−
c (Zi− |J) log p(S(J), Z, Y )∑

J∈B rg(J)

 , (4.68)

where the second line is obtained by substituting (4.62). Compare these updates (4.65)
and (4.68) required in the theoretical CVB (Algorithm 7) for such a modified variational
inference task with the Monte Carlo approximated updates (4.12) and (4.13) required
in the IS-CVB (Algorithm 8), we can find the following relationship always holds

f(J) = ω̃(J),

rg(J) = ω∗(J),

ri,B
c (Zi) = q̂i,B

c (Zi),
ri

c(Zi|J) = qi
c(Zi|S(J)),

(4.69)

if 1) the initial distributions of {r}cf for starting Algorithm 7 and the initial distributions
of {q}cf for starting Algorithm 8 are the same; 2) the same refinement steps for Si

are of carried out for each algorithm; and 3) r̃i,B
c (Zi) and q̂i,B

c are set to the same
distribution when ∑

j∈B ω̃
(j) = 0 and ∑

J∈B rg(J) = 0. This shows that the IS-CVB
in Algorithm 8 essentially performs the theoretical CVB for the modified variational
inference task described above. In particular, the refinement of Si in IS-CVB (Algorithm
8) corresponds to the refinement of the partitions of J ’s domain in the theoretical CVB
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(Algorithm 7) for the modified variational inference task. The weight evaluation in
(3.47) and approximate local update (4.13) in IS-CVB are essentially the coordinate
ascent updates (4.65) and (4.68) in theoretical CVB. As discussed in Section 4.2.2, such
a theoretical CVB guarantees the increase of the ELBO for this modified variational
inference task. Therefore, each step of Si refinement, weight evaluation, local update
in the IS-CVB (Algorithm 8) must also guarantee a non-negative increment of the
modified ELBO L in (4.64).

Next, we show the second part of the proof. When the global update in (4.65) is
just carried out with the latest update rc, i.e. {r}cf = {r̃g, r

1
c , r

2
c , ...r

Nc
c }, we have

L =E
r̃g(J)

∏Nc
i=1 ri

c(Zi|J) log p̌(J, Z, Y )
r̃g(J)∏Nc

i=1 r
i
c(Zi|J)

=E
r̃g(J)

∏Nc
i=1 ri

c(Zi|J) log p(S(J), Z, Y )
λ(S(J))r̃g(J)∏Nc

i=1 r
i
c(Zi|J)

− log
Np∑
p=1

p(S(p))
λ(S(p))

=Er̃g(J) (log f(J)− log r̃g(J))− log
Np∑
p=1

p(S(p))
λ(S(p))

=Er̃g(J) log
Np∑

J=1
f(J)− log

Np∑
p=1

p(S(p))
λ(S(p))

= log
Np∑

J=1
f(J)− log

Np∑
p=1

p(S(p))
λ(S(p))

= log
Np∑
p=1

ω̃(p) − log
Np∑
p=1

p(S(p))
λ(S(p))

=F̂ − logNp − log
Np∑
p=1

p(S(p))
λ(S(p)) ,

(4.70)

where the second, third and fourth lines are obtained by using (4.62), (4.65), and
(4.67) respectively. The fifth line is obtained by using the fact that log∑Np

J=1 f(J) is a
constant that no longer depends on J . The sixth, and the last lines are obtained by
substituting (4.69), and (4.15) respectively. (4.70) shows that L and F̂ are equal up
to an additive constant.
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Moreover, we can check F̂ is always bounded above. Specifically, by using the last
line and the second line in (4.70), we have

F̂ =E
r̃g(J)

∏Nc
i=1 ri

c(Zi|J) log p(S(J), Z, Y )
λ(S(J))r̃g(J)∏Nc

i=1 r
i
c(Zi|J)

+ logNp

≤ log E
r̃g(J)

∏Nc
i=1 ri

c(Zi|J)
p(S(J), Z, Y )

λ(S(J))r̃g(J)∏Nc
i=1 r

i
c(Zi|J)

+ logNp

= log
Np∑

J=1

p(S(J), Y )
λ(S(J)) + logNp,

(4.71)

where the second line is obtained using Jensen’s inequality. This shows that F̂ is
always bounded above by a constant in the last line of (4.71).

Finally we show the convergence of (F̂k)k∈N. Recall that each (F̂k) is evaluated in
Algorithm 8 for each iteration after carrying out 1) partition refinement, 2) approximate
local update, and 3) weight evaluation. We have showed that all these three steps in
Algorithm 8 guarantee a non-negative increment of the modified ELBO L in (4.64).
Then because (4.70) shows that L equals F̂ plus a constant, the sequence (F̂k)k∈N must
also be monotonically increasing across the iterative updates in Algorithm 8. Note
that the refinement step in the theoretical CVB, which can be carried out manually
at any desired iteration number, may lead to further updates with a non-negative
increment of L; and henceforth the Fk can potentially increase at any desired iteration
number. Therefore, the index partitions Si (i = 1, 2, ..., Nc) need to be fixed after some
iteration number to ensure (F̂k)k∈N is a standard sequence without manual regulation.
The convergence of such a sequence is then guaranteed by the fact that (F̂k)k∈N is a
sequence of real numbers, and it is monotonically increasing and bounded above as
shown in (4.71).

4.5 Simulation Result

In this section, we verify the proposed IS-CVB and Theorem 4.3.2 on a simple example.
Consider the following Bayesian model:

p(µ, ν) = N (µ; 0, 2)G(ν; 2, 0.5),

p(x|µ, ν) = N
(
x;µ, ν−1

)
, p(y|x) = N

(
y; 0.5x2, 1 + e10x

)
,
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where G(k, θ) is the gamma distribution with shape parameter k and scale parameter
θ. We are interested in the following two posteriors: 1) p(x, µ, ν|y = 8), and 2)
p(x, µ, ν|y = 25). As the exact posteriors are analytically intractable, we approximate
them within the proposed CVB framework. We consider the conditionally factorised
families which satisfy the factorisation q(x, µ, ν) = qg(x)qµ

c (µ|x)qν
c (ν|x), and adopt the

following five different partitions Pµ,Pν for qc:
(i) fully factorised: Pµ = {R},Pν = {R};
(ii) jointly factorised 1: conditional everywhere qµ

c and Pν = {R};
(iii) jointly factorised 2: Pµ = {R} and conditional everywhere qν

c ;
(iv) setwise conditional: Pµ = Pν = {R≥0,R<0};
(v) conditional everywhere: conditional everywhere qµ

c and qν
c .

Note that the conditionally factorised families with settings (i)-(iii) degenerate to
the mean-field families. The above five settings are implemented in IS-CVB without
refinement steps, i.e. the partitions are fixed all the time. We also consider another
two settings:
(vi): initialised with (i), switches to (iii), then to (v) if converged;
(vii): initialised with (i), switches to (iv), then to (v) if converged,
where both are initialised with the setting (i), and then switch to a setting with finer
partitions twice if the algorithm has converged.

All settings (i)-(vii) are implemented by using IS-CVB with the same particle
set (Np = 1000) and the same initialised distributions. The proposal we use is
λ(x) = 0.3N (x;m1, c1) + 0.7N (x; 1, 1.5), where m1 = −

√
2y, c1 = 1 + e10m1 . This

proposal is designed to cover the possible range of x that can generate the given
observation y. In particular, if x ≤ −1, the true x is very likely to be covered
by N (x;m1, c1); and the N (x; 1, 1.5) should easily cover the region −1 < x ≤ 3;
and we do not consider covering the region x > 3, as in such a case the posterior
p(x|y) ∝ p(y|x)p(x) is very low no matter what y is received. The implementation of
IS-CVB with the settings (i)-(iii) are simply Monte Carlo based mean-field CAVI, e.g.
in (ii) each sample of x are associated with a closed-form q(µ|x); and the standard
CAVI is analytically intractable for this model.

To derive the corresponding update for IS-CVB, first note that p(µ|ν, y) is a
Gaussian density with argument µ and p(ν|µ, y) is a gamma density with argument of
ν. Then according to Section 4.3.3, the parametric form of q̂µ,B

c (µ) and q̂ν,B
c (ν) in our

local updates are Gaussian and gamma density respectively. It can be showed that for
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B ∈ Pµ, the local update q̂µ,B
c (µ) in (4.13) yields

q̂µ,B
c (µ) = N

µ;
C−1m+∑

p∈B ω
∗(p)
B ν(p)x(p)

C−1 +∑
p∈B ω

∗(p)
B ν(p)

,
1

C−1 +∑
p∈B ω

∗(p)
B ν(p)

 ,
ω

∗(p)
B = ω̃(p)∑

p∈B ω̃(p) ,

(4.72)

where m,C are the mean and variance of p(µ) (0 and 2 in this example), and ν(p) =
Eq(ν|x(p))ν; and for B ∈ Pν , the q̂µ,B

c (µ) is

q̂µ,B
c (µ) = G

ν; k + 0.5, (1
θ

+
∑

p∈B ω
∗(p)
B

(
(x(p) − µ(p))2 + Var[µ](p)

)
2 )−1

 ,
ω

∗(p)
B = ω̃(p)∑

p∈B ω̃(p) ,

(4.73)

where k and θ are the shape and scale parameter in p(ν) (2 and 0.5 in this example)
and µ(p), Var[µ](p) are the mean and variance of µ with respect to q(µ|x(p)).

The conditional everywhere update and fully factorised update can be obtained
from (4.72) and (4.73) by setting Pµ and Pν to the corresponding partitions discussed
in the Remark 2 for Definition 4.2.1. The unnormalised weight ω̃(p) can be evaluated
as follows according to (4.12): denote q(ν|x(p)) = G(a(p), b(p)), then

ω̃(p) = exp
(

Eq(µ,ν|x(p)) log p(y, x
(p), µ, ν)

q(µ, ν|x(p)) − log(λ(x(p)))
)
,

Eq(µ,ν|x(p)) log p(y, x
(p), µ, ν)

q(µ, ν|x(p)) = (k − 0.5)(ψ(a(p)) + log(b(p)))− a(p)b(p)

θ
+ a(p) + log(b(p))

− 0.5C−1(Var[µ](p) + (µ(p) −m)2)− 0.5a(p)b(p)Var[µ](p) + log(Γ(a(p)))
+ (1− a(p))ψ(a(p)) + 0.5 log(Var[µ](p)) + h(x(p)) + constp,

h(x) =− 0.5a(p)b(p)(x− µ)2 − 0.5 log(1 + etx)− 0.5(1 + etx)−1(y − 0.5x2)2,

constp =− log Γ(k)− k log θ − 0.5 log(C)− log(2π) + 0.5, (4.74)

where constp is the constant that does not depend on p and hence can be omitted in
the unnormalised weight.

The IS-CVB is implemented for all settings (i)-(vii) until convergence. The marginal
variational distribution q(µ) and q(ν) for all the settings are shown in Fig. 4.1, except
(vi) and (vii) as they are highly overlapped with setting (v). We can see that the
proposed conditionally factorised families (iv)-(v) effectively capture the multimodal
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Fig. 4.1 Marginal variational distributions and the estimated ELBO. The groundtruth
is obtained using a numerical grid-based method.
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Fig. 4.2 Joint variational distributions q(µ, ν) ≈ p(µ, ν|y = 25). The groundtruth is
obtained using a numerical grid-based method.

behaviour, and produce better fitted marginal approximations than standard mean-field
settings (i)-(iii) for all considered distributions. The advantage of our method is further
supported by their higher estimated ELBO F̂ in Fig. 4.1. The stepped curve of
the F̂ produced by setting (vi) and (vii) satisfies Theorem 4.3.2, and guarantees a
higher F̂ produced with the proposed CVB method compared to standard Monte Carlo
mean-field CAVI.

Furthermore, the joint variational distributions q(µ, ν) which approximate the
posterior with observation y = 25 (evaluated via (4.14)) are plotted in Fig. 4.2, where
the dependence between µ and ν is clearly retained in the proposed conditionally
factorised family, i.e. settings (iv) and (v), and in contrast lost in other mean-field
settings, i.e. (i)-(iii). Finally from Fig. 4.1 and Fig. 4.2, the setwise conditional setting
(iv) achieves a competitive performance as the most accurate conditional conditional
everywhere setting. We emphasise that it only requires the evaluation of 4 free-form
optimal variational distributions (two for each qc) in the implementation of IS-CVB,
which is even less than the jointly factorised mean-field cases (ii) and (iii) where Np + 1
free-form variational distributions need to be determined.
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4.6 Conclusion

This chapter presents a generic variational family that can account for the dependence
between variables with user selected detail. The resulting CVB algorithm offers a flexible
trade-off between inference accuracy and computational cost. The theoretical CVB and
its importance sampling implementation IS-CVB are derived. We prove several useful
properties of the algorithm such as the guaranteed performance improvement compared
to the standard mean-field CAVI, and the monotonically increasing property of the
estimated ELBO. The tractability of the resulting update and the applicability of the
algorithm are also discussed. Although the algorithm is only demonstrated here with a
simple posterior computation task, it forms the basis for a sequential implementation
that features the importance sampling particle filter. We have also developed it into a
full filtering and online parameter estimation strategy for time series in a conditionally
Gaussian system (e.g. Lévy state-space models in Chapter 3 and [91, 142, 69, 94]),
results of which will be reported in future.



Chapter 5

A Variational Bayes
Association-based Multi-object
Tracker under the
Non-homogeneous Poisson
Measurement Process

In the object tracking applications discussed in chapters 2 and 3, it is assumed that we
know which measurements originate from which objects. However, in many real-world
applications, sensors cannot distinguish between different objects. Consequently, we
only receive data that includes measurements from all objects in the surveillance area,
as well as clutter resulting from obstacles or environmental noise, without knowing
which data are associated with specific objects. To address this challenge, the multi-
object tracking problem in such a scenario will be the focus of this and the following
chapter.

The non-homogeneous Poisson process (NHPP) has been widely used to model
extended object measurements where one object can generate zero or several measure-
ments; it also provides an elegant solution to the computationally demanding data
association problem in multiple object tracking. This chapter presents a variational
Bayes association-based NHPP tracker (VB-AbNHPP) that can efficiently perform
tracking, data association, and learning of target and clutter rates with a parallelisable
implementation. This VB-AbNHPP tracker can be easily extended to online learn other
static parameter such as measurement covariance/object extent based on a general
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coordinate ascent variational filtering framework developed here. The results show
that the proposed VB-AbNHPP tracker is superior to other competing methods in
terms of implementation efficiency and tracking accuracy. The results in this chapter
partly appeared in a prior publication, [143]1.

5.1 Introduction

The NHPP tracker provides an exact measurement likelihood and avoids the combina-
torial complexity of the data association problem [144]. However, the original scheme
in [144] is implemented by using a particle filter (PF), which could be computationally
expensive for practical application; it also suffers from ‘the curse of dimensionality’ of
particle filtering. In contrast, sequential Markov chain Monte Carlo (SMCMC) has
proven to be a promising methodology to handle high-dimensional problems [145].
Therefore, in [146], a sequential MCMC scheme was utilised to infer online the target
state and association variables under the NHPP measurement model. With a large
enough sample size, this method can theoretically converge to an optimal Bayesian
filter.

Complementary to the aforementioned numerical sampling methods, deterministic
approximation methods typically feature a fast implementation, which makes them
appealing in practical applications. One example is the extended target Joint Proba-
bilistic Data Association (ET-JPDA) filter proposed in [147]. It adopts the same NHPP
measurement model but falsely assumes an independent predictive likelihood for each
measurement conditional on associations; hence, the derived independent marginal
association posterior in [147] is regarded as a rough approximation. Moreover, the
moment matching strategy in the target state update also introduces approximation.
Particularly, for each target, it recursively updates the target state with one single
measurement by moment matching until exhausting all measurements within the gate.
Such procedures also raise a concern that the order of the measurements may affect the
update result. Approximate inference techniques, including graphical model methods,
have been employed to tackle the data association problem [148, 149]. However, the
approaches presented in [148, 149] are specifically tailored for point target measurement
models, rendering them unsuitable for NHPP measurement models. Although an exten-
sion of the message-passing algorithm [150] accommodates NHPP model, its reliance on
a particle filter leads to significant computational inefficiency, particularly in scenarios
with massive measurement data demonstrated in [50]. Another tracking method that

1© 2022 IEEE. Reprinted, with permission, from [143]
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adopts an approximate inference method is the probabilistic multiple hypothesis tracker
(PMHT) in [151], of which measurement model is inherently equivalent to the NHPP
model conditional on a known measurement number. However, the PMHT method
utilises a batch expectation maximisation (EM) technique and thus could not track
targets in an online fashion.

5.1.1 Contributions

In this chapter, we propose a variational Bayes association based NHPP tracker that
can estimate online the target kinematics and the association variables in parallel.
It provides a promising alternative to the Gibbs association based NHPP tracker in
[146] with comparable tracking accuracy whilst consuming much less computational
time. Compared to the PMHT method in [151], our method is an online Bayesian
approximate filtering method and can offer the approximate posterior of target state
and association variables. In comparison to the ET-JPDA filter in [147], our method
systematically approximates the exact posterior with a mathematically defined objective
function to minimise a certain Kullback-Leibler (KL) divergence; results demonstrate
that our method has much more accurate tracking performance with less track loss
and computational time.

Whilst the standard VB-AbNHPP tracker assumes a known static parameter, we
also develop an adaptive tracker that can cope with unknown target and clutter rates.
In particular, the independent Gamma initial priors are used to model targets and
clutter Poisson rates, under which the tractable variational updates are kept within our
framework. Subsequently, we develop Algorithm 9 that can simultaneously perform the
tracking and Poisson rates learning tasks. Comprehensive derivations for the proposed
tracker are included, illustrating a rational initialisation of the variational distribution
and the development of an efficient-to-implement (yet demanding-to-derive) variational
lower bound. Other parameters such as the measurement covariance can be learnt
similarly if required.

Two other contributions of this chapter are that we construct an association-based
NHPP system and provide a general coordinate ascent variational filtering framework
with online static parameter learning. To start with, this chapter concisely states
the relationship between the association-based NHPP measurement model and the
original NHPP model in [144], and provides a dynamic Bayesian network formulation
to facilitate the understanding of the dependence structure of the model that may
provide further insights on the applicable approximate inference method. Moreover, in
Section 5.3, we consider a general dynamic system and provide a unified framework for
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coordinate ascent variational filtering with or without static parameter learning, whilst
other similar variational filtering strategies in [51–53] are only for different or specific
dynamic systems.

5.1.2 Chapter outline

The rest of chapter is organised as follows. Section 5.2 defines the association-based
NHPP system and formulate the tracking problem. Section 5.3 introduces a general
coordinate ascent variational filtering framework that allows approximate filtering with
or without static parameter learning. Subsequently, we derive the VB-AbNHPP tracker
with targets and clutter Poisson rates learning in Section 5.4. Following similar steps,
in Section 5.5, we briefly derive the standard VB-AbNHPP tracker, which assumes
known Poisson rates. Section 5.6 demonstrates the performance of both VB-AbNHPP
tracker with and without the known rate using simulated data. Finally, Section 5.7
concludes the chapter.

5.2 Problem formulation

Assume that there are K targets. At time step n, their joint state is

Xn = [X⊤
n,1, X

⊤
n,2, ..., X

⊤
n,K ]⊤,

where each vector Xn,k, k ∈ {1, ..., K} denotes the kinematic state (e.g. position and
velocity) for the k-th target. Let Yn = [Yn,1, ..., Yn,Mn ] denote measurements received
at time step n, and Mn is the total number of measurements.

This chapter is based on the NHPP measurement model proposed in [144]. Denote
the set of Poisson rates by Λ = [Λ0,Λ1, ...,ΛK ], where Λ0 is the clutter rate and Λk is
the k-th target rate, k = 1, ..., K. Each target k generates measurements by a NHPP
with a Poisson rate Λk, and the total measurement process is also a NHPP from the
superposition of the conditional independent NHPP measurement processes from K

targets and clutter. The total number of measurements follows a Poisson distribution
with rate Λsum = ∑K

k=0 Λk.
The likelihood function deduced in [144] is

h(Yn,Mn|Xn,Λ) = e−Λsum

Mn!

Mn∏
j=1

(
K∑

k=0
Λkℓ(Yn,j|Xn,k)). (5.1)
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Fig. 5.1 Dynamic Bayesian network representing the joint distribution over associations
θn, Poisson rates Λ, target states Xn, measurement number Mn, and measurement set
Yn

where we assume the target originated measurement follows a linear Gaussian model
while clutters are uniformly distributed in the observation area V :

ℓ(Yn,j|Xn,k) =

N (HXn,k, Rk), k ̸= 0; (object)
1
V
, k = 0; (clutter)

(5.2)

where Xn,0 denotes the parameter/information of the clutter likelihood (e.g. in our
case, the region of the uniform distribution), and in this chapter, we assume it is always
known. Note that Xn,0 is not included in the joint target state Xn. For point target
k, Rk indicates the sensor noise, and for extended target, Rk is the extended target’s
covariance/extent.

5.2.1 Association-based NHPP measurement model

Here we reformulate the NHPP measurement model by incorporating the association
variables. First, we define the association variable θn = [θn,1, ..., θn,Mn ], with each
component θn,j ∈ {0, 1, ..., K}; θn,j = 0 indicates that Yn,j is generated by clutter, and
θn,j = k, k ∈ {1, . . . , K} means that Yn,j is generated from the target k. Clearly, θn and
Yn have the same length Mn. Subsequently, the joint distribution with the association
variables θn is

p(Yn,Mn, θn|Xn,Λ) = p(Yn|θn, Xn)p(θn|Mn,Λ)p(Mn|Λ), (5.3)
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where p(Mn|Λ) is a Poisson distribution

p(Mn|Λ) = exp(−Λsum)(Λsum)Mn

Mn! , (5.4)

and all these Mn measurements are conditionally independent

p(Yn|θn, Xn) =
Mn∏
j=1

ℓ(Yn,j|Xn,θn,j
), (5.5)

where Mn is known from θn, and the function ℓ is the same as in (5.1) and defined in
(5.2). For association θn we define

p(θn|Mn,Λ) =
Mn∏
j=1

p(θn,j|Λ), (5.6)

where each association component is categorical distributed

p(θn,j|Λ) =
∑K

k=0 Λkδ[θn,j = k]
Λsum

. (5.7)

We can see that this measurement model formulation is theoretically equivalent to
the NHPP model in [144]. To demonstrate it, we use the definition from (5.3) to (5.7);
by marginalising the association θn out from p(Yn,Mn, θn|Xn,Λ), we can find out that
it is equal to the likelihood function in (5.1):

∑
θn

p(Yn,Mn, θn|Xn,Λ) = h(Yn,Mn|Xn,Λ). (5.8)

Therefore, these two formulations are equivalent.

5.2.2 Dynamic Bayesian network modelling

The association-based NHPP measurement model can be combined with any dynamic
models introduced in chapters 2 and 3 for multi-target state Xn to formulate a complete
dynamic Bayesian network. In this chapter, we consider a standard independent linear
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Gaussian transition for each target state Xn,k, i.e.

p(Xn|Xn−1) =
K∏

k=1
p(Xn,k|Xn−1,k)

=
K∏

k=1
N (Xn,k;Fn,kXn−1,k +Bn,k, Qn,k). (5.9)

Corresponding to the multi-target tracking problem under the association-based NHPP
measurement model, the target distribution from time step 0 to N can be factorised as
follows

p(X0:N , Y1:N , θ1:N ,M1:N |Λ) =p(X0)
N∏

n=1
p(Xn|Xn−1)

× p(Yn|θn, Xn)p(θn|Mn,Λ)p(Mn|Λ) (5.10)

where p(Xn|Xn−1) is the transition density specified by the dynamic model (e.g.
constant velocity), and the other distributions are given in (5.4)-(5.7).

This joint distribution can be represented by a dynamic Bayesian network (DBN)
shown in Fig. 5.1, based on the factorisation in (5.10). Each conditional distribution
on the right hand side of (5.10) can be depicted by the directed arrows, which point
from the parent nodes to the child nodes (e.g. the arrow is from Λ to Mn for the
conditional distribution p(Mn|Λ)).

Conditional on known parameters K,R1:K and the transition p(Xn|Xn−1), the
objective of filtering is to sequentially estimate the posterior p(Xn, θn,Λ|Y1:n), which
is equivalent to p(Xn, θn,Λ|Y1:n,M1:n) conditional on M1:n since cardinality Mn is
inherently known once the measurements Yn are received. The exact filtering strategy
for the association-based NHPP tracker can then be expressed as follows

p(Xn, θn,Λ|Y1:n) ∝p(Yn|θn, Xn)p(θn|Mn,Λ)p(Mn|Λ)

×
∫
p(Xn−1,Λ|Y1:n−1)p(Xn|Xn−1)dXn−1, (5.11)

where parameters K,R1:K are known and thus are implicitly conditioned and omit-
ted from all relevant densities for convenience. The explicit evaluation of (5.11) is
intractable since it requires enumerating all possible configurations of θ1:n. In this
thesis, the VB-AbNHPP tracker approximates the online filtering recursion (5.11) with
the coordinate ascent variational Bayes technique.
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5.3 Coordinate ascent variational filtering with on-
line parameter learning

In this section, we will introduce the coordinate ascent variational filtering framework
in a general setting before we apply it to the tracking problem formulated in Section
5.2. We consider a dynamic system with several static parameters, a sequence of latent
states, and measurements Y1:n from time step 1 to n. We denote Zn = Xn

⋃Ξ as the
set of all latent variables in the system at time step n that we wish to infer, where Xn

is the set of all unknown sequential latent states at time step n, and Ξ is the set of all
unknown static parameter(s) of the system. We assume that elements in all defined
sets are distinguishable.

Assume that Ξ,X1, ...,Xn are disjoint with each other. Note that Z1, ...,Zn by our
definition are not mutually disjoint unless all system static parameters are known; in
this special case, Ξ = ∅ and thus Zn = Xn. Finally, we assume that the exact optimal
filtering with online parameter estimation for this system can be recursively expressed
by the prediction step and the update step, which yield the following predictive prior
pn|n−1(Zn) and posterior p(Zn|Y1:n), respectively, i.e.

pn|n−1(Zn) =
∫
f(Xn|Zn−1)p(Zn−1|Y1:n−1)dXn−1,

p(Zn|Y1:n) ∝g(Yn,Zn)pn|n−1(Zn),
(5.12)

where f is a known conditional probability density of Xn conditional on Zn−1. g is an
arbitrary known function that depends on Yn and Zn. It can represent an unnormalised
likelihood function, and can even incorporate known functions that are related to Zn

instead of directly involving Yn. Note that f and g may also depend on other known
parameters. p is defined as the exact probability law of the considered dynamic system;
here p is the same probability law as defined in Section 5.2 in the case of a NHPP
system described in Section 5.2.

A typical example of the considered system is a general state space model where the
unknown latent state X1:n follows a first-order Markovian transition and Ξ refers to the
unknown parameter(s) of the transition and/or measurement function. Moreover, this
system also applies to our AbNHPP framework formulated in Section 5.2. Specifically,
Yn refers to the measurements Yn, Xn refers to the set {Xn, θn}, and Ξ refers to
the parameter set {Λ, R1:K} or simply ∅ depending on whether those parameters are
required to be inferred.
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Variational filtering can be employed when the exact filtering recursion in (5.12)
is intractable, which recursively approximates p(Zn|Y1:n) in (5.12) with a converged
variational distribution q∗

n(Zn) that is chosen by minimising a certain KL divergence.
By convention, we divide our variational filtering framework into a prediction step
and an update step. In the following subsections, we will first describe the objective
and rationale of our approximate filtering strategy in Section 5.3.1, then clarify the
details of the variational update step in Section 5.3.2, and finally present the way to
perform a reliable prediction step in Section 5.3.3. The framework’s applicability will
be discussed in Section 5.3.4.

5.3.1 Approximate filtering objective and probability law

Due to the unavailability of an exact p(Zn−1|Y1:n−1), the exact predictive prior
pn|n−1(Zn) in (5.12) is intractable. Therefore, the prediction step in our approximate
filtering aims to approximate the exact predictive prior pn|n−1(Zn) with a tractable
distribution p̂n|n−1(Zn), whose construction will be discussed in Section 5.3.3. With
such a p̂n|n−1(Zn), the approximate filtering probability law for the update step at the
time step n can be defined as p̂n, which satisfies the following factorisation:

p̂n(Zn,Yn) ∝ g(Yn,Zn)p̂n|n−1(Zn), (5.13)

Specifically, p̂n is defined for variables in Yn and the set Zn, and g is the same function
as in the exact filtering recursion in (5.12). Note that by such a construction, we have
p̂n(Zn) = p̂n|n−1(Zn) only if the function

∫
g(Yn,Zn)dYn does not depend on Zn, e.g.

when g(Yn,Zn) is a conditional density p̂n(Yn|Zn). This factorisation in (5.13) also
directly suggests the following posterior:

p̂n(Zn|Yn) ∝ g(Yn,Zn)p̂n|n−1(Zn). (5.14)

By comparing (5.14) with (5.12), it can be seen that the posterior under the
approximate filtering probability law, i.e. p̂n(Zn|Yn), is identical to the exact posterior
p(Zn|Y1:n) if p̂n|n−1(Zn) equals pn|n−1(Zn). Therefore, p̂n(Zn|Yn) is regarded as the
target distribution of the approximate filtering, since it is expected to provide a
close approximation to the exact posterior p(Zn|Y1:n) in (5.12) if the prediction step
produces an accurate p̂n|n−1(Zn). Subsequently, the objective of the update step in our
approximate filtering is to infer the target distribution p̂n(Zn|Yn) via (5.14).
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5.3.2 Update step with coordinate ascent variational inference

In the update step, a converged variational distribution q∗
n(Zn) is evaluated to ap-

proximate the target distribution p̂n(Zn|Yn) in (5.14) within the coordinate ascent
variational inference framework. To this end, we first posit a (mean-field) family of
variational distributions qn(Zn). Each member of this family must satisfy the follow-
ing factorisation qn(Zn) = ∏ν

i=1 q
i
n(zi

n), where each zi
n (i = 1, 2, ..., ν) is a predefined

factorised variable and is disjointly partitioned from Zn, i.e. {z1
n, z

2
n, ..., z

ν
n} = Zn. It is

noted that here we adopted a mean-field approximation, which is a special case of the
more versatile conditionally factorised variational Bayes presented in Chapter 4, which
can theoretically yield a better approximation with an adjustable conditional varia-
tional distribution, preserving the dependence between variables. Then our variational
distribution q∗

n(Zn) is chosen from the posited family that maximises the following
evidence lower bound (ELBO) Fn(qn):

Fn(qn) = Eqn(Zn) log g(Yn,Zn)p̂n|n−1(Zn)
qn(Zn) . (5.15)

The rationale behind this optimisation is to minimise KL(qn(Zn)||p̂n(Zn|Yn)), since
this KL divergence can be expressed as the ELBO Fn(qn) in (5.15) plus a constant
that, according to (5.14), is not dependent on Zn.

The optimisation of Fn(qn) in (5.15) with respect to qn can be done by the following
coordinate ascent algorithm. We start by setting qi

n(zi
n) to an initialised distribution

q(0)
n (zi

n) for all i = 1, 2, ..., ν; then we iteratively update qi
n for each i = 1, 2, ..., ν

according to (5.16) while keeping qi−
n (zi−

n ) fixed, where qi−
n (zi−

n ) is defined as the joint
variational distribution of all variables in Zn except zi

n, i.e. qi−
n (zi−

n ) = ∏
j ̸=i q

j
n(zj

n).

qi
n(zi

n) ∝ exp
(
Eqi−

n (zi−
n ) log g(Yn,Zn)p̂n|n−1(Zn)

)
. (5.16)

The qi
n in (5.16) is the optimal distribution that achieves the highest ELBO Fn(qn)

when qi−
n is fixed. Each update via (5.16) guarantees an increment of Fn(qn) so that

the algorithm eventually finds a local optimum. Such an optimisation procedure is
known as CAVI. More details about CAVI, including the derivation of (5.16), can be
found in [12, 23].

The convergence of the CAVI can be assessed by monitoring the ELBO Fn(qn) in
(5.15) for each iteration of updates. Typically, when the increment of Fn(qn) is smaller
than a certain threshold, we assume CAVI has converged and the latest updated qn(Zn)
is chosen as our approximate filtering result q∗

n(Zn).
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5.3.3 Prediction step with approximate filtering prior

Recall that the objective of our prediction step is to find a p̂n|n−1(Zn) that approximates
the exact predictive prior pn|n−1(Zn) in (5.12), whose intractability arises from the lack
of an exact filtering prior p(Zn−1|Y1:n−1). To obtain a tractable predictive prior, we
replace this intractable p(Zn−1|Y1:n−1) in the integrand of (5.12) with some tractable
approximate filtering prior r(Zn−1). A natural choice for such an approximate filtering
prior is q∗

n−1(Zn−1), which is the converged variational distribution obtained from
the approximate filtering at the time step tn−1, and subsequently our approximate
predictive prior can be written as (5.17). However, in some cases, a more sophisticated
construction of the approximate filtering prior is required to ensure a reliable static
parameter estimator. Below, we discuss this issue by considering two different scenarios
depending on whether the online estimation of the static parameters is required.

5.3.3.1 Ξ = ∅

In this case, we assume that all static parameters in the system are known. Thus, we
have Zn−1 = Xn−1, and our algorithm focuses solely on performing the approximate
filtering task. To accomplish this, we suggest using the standard approximate filtering
prior r(Zn−1) = q∗

n−1(Zn−1) to evaluating the p̂n(Zn) for the prediction step:

p̂n|n−1(Zn) =
∫
f(Xn|Zn−1)q∗

n−1(Zn−1)dXn−1. (5.17)

In other words, the converged variational distribution for the last approximate filtering
step is employed as the prior for our current prediction step. Such an empirical
approximate filtering prior is commonly used in many approximate filtering methods
such as the extended Kalman filter, and other Gaussian approximate filters [36].

5.3.3.2 Ξ ̸= ∅

Our algorithm in this setting performs the approximate filtering along with online
Bayesian parameter learning for the static parameters Ξ. Recall that examples of Ξ can
be the Poisson rate and measurement covariance/extent {Λ, R1:K} in the tracking task in
Section 5.2. Specifically, the parameter posterior p(Ξ|Y1:n) is approximated by q∗

n(Ξ) =∫
q∗

n(Zn)dXn. It has been observed that applying the standard approximate filtering
prior in (5.17) to this setting (i.e. set p̂n|n−1(Zn) =

∫
f(Xn|Zn−1)q∗

n−1(Ξ,Xn−1)dXn−1

for all time steps) may cause the variance of q∗
n(Ξ) to be very small before its mean

converges to the ground truth of Ξ; such an overconfident q∗
n(Ξ) renders it very difficult
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to correct our estimation of Ξ with future data. To mitigate this issue, it is empirically
helpful to slightly ‘flat’ q∗

n(Ξ) so that it can be less confident. Therefore, we construct
our approximate filtering prior r(Zn−1) as follows,

r(Zn−1) ∝ q∗
n−1(Ξ)γn−1q∗

n−1(Xn−1|Ξ), (5.18)

where q∗
n−1(Xn−1|Ξ) = q∗

n−1(Xn−1,Ξ)/q∗
n−1(Ξ), and henceforth the approximate predic-

tive prior p̂n(Zn) is

p̂n|n−1(Zn) =
∫
f(Xn|Zn−1)r(Zn−1)dXn−1 (5.19)

∝ q∗
n−1(Ξ)γn−1

∫
f(Xn|Ξ,Xn−1)q∗

n−1(Xn−1|Ξ)dXn−1.

γn−1 ∈ (0, 1] is a forgetting factor that can ‘smooth’ the density q∗
n−1(Ξ) when used in

the approximate filtering prior r(Zn−1). Specifically, γn−1 = 1 recovers the standard
approximate filtering prior q∗

n−1(Zn−1) as used in (5.17), and in the limiting case
γn−1 = 0, the approximate filtering prior r(Zn−1) completely ignores the q∗

n−1(Ξ) and
assumes a uniformly distributed Ξ. Moreover, it is useful to construct a monotonically
increasing sequence {γ}n that approaches 1 when n is large, such that our parameter
posterior approximation q∗

n(Ξ) would eventually converge to the exact value of Ξ as a
point estimator.

5.3.4 Further discussions on the applicability

The introduced coordinate ascent variational filtering with parameter learning frame-
work is devised for a general dynamic system that satisfies the optimal filtering recursion
in (5.12). However, not all such systems can lead to closed-form approximated distribu-
tions through the introduced framework. The key to yielding a tractable approximate
distribution is to make sure that the choice of the factorised variable zi

n(i = 1, 2, ..., ν)
and the p̂n|n−1(Zn) produced by our prediction step should lead to an analytically
tractable updated variational distribution qi

n in (5.16). This may require the predictive
prior p̂n|n−1(Zn) to take some particular parametric form that does not agree with
the two constructions of p̂n(Zn) we suggested in Section 5.3.3 (i.e. (5.17) and (5.19)).
In this case, we could adopt a p̂n|n−1(Zn) in the desired parametric form, but ensure
that it matches the moments of the predictive distribution suggested in Section 5.3.3
to preserve some accuracy. Alternatively, any intractable coordinate ascent update
in (5.16) may be approximated by the Monte Carlo methods. In particular, we can
sample from the intractable variational distributions to approximate other updated
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variational distributions in a closed-form expression. Such a strategy is commonly seen
in the Monte Carlo based CAVI, e.g. [133, 127, 53, 59].

5.4 Variational Bayes AbNHPP tracker

The approximate inference for the association based NHPP system in Section 5.2
can now be carried out within the coordinate ascent variational filtering framework
in Section 5.3. In particular, our VB-AbNHPP tracker with known static system
parameters (i.e. Ξ = ∅) will be presented in Section 5.5 for tracking tasks with
known Poisson rate Λ and measurement covariance/extent R1:K . In this section, we
demonstrate that our VB-AbNHPP tracker can perform tracking and online learning
the unknown parameters within the variational filtering framework presented in Section
5.3. We will consider the tracking tasks with an unknown Poisson rate Λ. The
measurement covariance/extent R1:K can be learnt in a similar fashion if unknown,
but for now we assume it is known for simplicity.

From now on, we assume target number K and measurement covariance R1:K

in the association based NHPP system in Section 5.2 are all known, and unless
otherwise stated, these parameters are always implicitly conditioned. Subsequently,
the variables of the general dynamic system in Section 5.3 are now Ξ = {Λ}, Yn = Yn,
Xn = {Xn, θn} and Zn = {Xn, θn,Λ}. Comparing the optimal filter recursion (5.12) to
the exact optimal filter recursion for the association based NHPP system in (5.11), the
densities for f, g become

f(Xn|Zn−1) =p(θn|Mn,Λ)p(Xn|Xn−1),
g(Yn,Zn) =p(Yn|θn, Xn)p(Mn|Λ). (5.20)

Note that f and g are known when the approximate filtering is carried out at time step
n, where Mn is inherently obtained from the latest received observations Yn. Since
Ξ ̸= ∅, we construct our approximate predictive prior p̂n|n−1(Zn) according to (5.19) in
Section 5.3.3.2, i.e.

p̂n|n−1(Xn, θn,Λ) ∝q∗
n−1(Λ)γn−1p(θn|Mn,Λ)

∫
p(Xn|Xn−1)q∗

n−1(Xn−1|Λ)dXn−1, (5.21)

where the forgetting factor γn−1 ∈ (0, 1] was introduced in Section 5.3.3.2. Now we
assume the factorisation for our mean-field family is q(Xn, θn,Λ) = q(Xn)q(θn)q(Λ).
This factorisation will later result in tractable coordinate ascent updates, as we will see
later. It also suggests that q∗

n−1(Xn−1|Λ) = q∗
n−1(Xn−1). Subsequently, the approximate
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predictive prior in (5.21) can be rewritten in a factorised form as follows for the
convenience of later derivation,

p̂n|n−1(Xn, θn,Λ)=p̂n|n−1(Xn)p̂n|n−1(Λ)p̂n|n−1(θn|Λ),

p̂n|n−1(Xn) =
∫
p(Xn|Xn−1)q∗

n−1(Xn−1)dXn−1,

p̂n|n−1(θn|Λ) =p(θn|Mn,Λ), (5.22)
p̂n|n−1(Λ) ∝q∗

n−1(Λ)γn−1 .

According to Section 5.3.1 and (5.13), the approximate filtering law p̂n of the update
step for Yn, Xn, θn,Λ is defined by,

p̂n(Xn, θn,Λ, Yn) ∝ p(Yn|θn, Xn)p(Mn|Λ)p(θn|Mn,Λ)p̂n|n−1(Xn)p̂n|n−1(Λ). (5.23)

The prediction step described in Section 5.3.3 is now used to evaluate the approximate
filtering priors in (5.22). Since p̂n|n−1(θn|Λ) in (5.22) can be directly obtained from our
model in (5.6), the prediction step only requires evaluating p̂n|n−1(Xn) and p̂n|n−1(Λ)
in (5.22). Their explicit forms will be given in (5.28) and (5.31) after a discussion of
the conjugate prior.

5.4.1 Coordinate ascent update

Recall that our mean-field family satisfies q(Xn, θn,Λ) = q(Xn)q(θn)q(Λ). Based on
Section 5.3.2, the update step of our tracker aims to minimise the KL divergence
KL(qn(Xn)qn(θn)q(Λ)||p̂n(Xn, θn,Λ|Yn)), or equivalently, to maximise the ELBO in
(5.15) as follows

F(qn) =Eqn(Xn)qn(θn)qn(Λ) log p̂n|n−1(Xn, θn,Λ)
qn(Xn)qn(θn)qn(Λ)

+ Eqn(Xn)qn(θn)qn(Λ) log p(Yn|θn, Xn)p(Mn|Λ), (5.24)

where p̂n|n−1(Xn, θn,Λ) is specified in (5.22). To this end, it iteratively updates qn(Xn),
qn(Λ) and qn(θn) according to (5.16) until convergence. Despite not being an exact
solution, it will be seen that all the updates are tractable and have closed-form solutions,
which showcases the advantage of using coordinate ascent variational inference in this
tracking task. We now derive these updates.
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5.4.1.1 Update for qn(Xn)

According to (5.16) on page 148, (5.5) on page 144 and (5.2) on page 143, and the fact
that qn(θn) = ∏Mn

j=1 qn(θn,j) (this will later be shown in (5.33)), it yields the following
update for Xn

qn(Xn) ∝p̂n|n−1(Xn)exp
(
Eqn(θn) log p(Yn|θn, Xn)

)
∝p̂n|n−1(Xn)

K∏
k=1

N
(
Y k

n;HXn,k, R
k
n

)
, (5.25)

where

Rk
n = Rk∑Mn

j=1 qn(θn,j = k)
, (5.26)

Y k
n =

∑Mn
j=1 Yn,jqn(θn,j = k)∑Mn

j=1 qn(θn,j = k)
. (5.27)

Such an update can be considered as updating the (predictive) prior p̂n|n−1(Xn) in (5.22)
with K pseudo-measurements Y k

n, k = 1, 2, ..., K (defined in (5.27)), each generated
independently from each target with a measurement covariance of (5.26). The conjugate
prior for such an update is Gaussian. In fact, with the independent linear Gaussian
transition p(Xn|Xn−1) in (5.9) and an independent initial Gaussian prior p(X0) =∏K

k=1 p(X0,k), the updated variational distribution can always maintain an independent
Gaussian form for each target (i.e. qn(Xn) = ∏K

k=1 qn(Xn,k)).
Specifically, if we denote the converged variational distribution for the k-th target

at time step n− 1 as q∗
n−1(Xn−1,k) = N (Xn−1,k;µk∗

n−1|n−1,Σk∗
n−1|n−1), then its predictive

prior is

p̂n|n−1(Xn,k) =N (Xn,k;µk∗
n|n−1,Σk∗

n|n−1),
µk∗

n|n−1 =Fn,kµ
k∗
n−1|n−1 +Bn,k,

Σk∗
n|n−1 =Fn,kΣk∗

n−1|n−1F
⊤
n,k +Qn,k,

(5.28)



154
A Variational Bayes Association-based Multi-object Tracker under the

Non-homogeneous Poisson Measurement Process

where Fn,k, Bn,k, Qn,k are given in (5.9). The variational distribution qn(Xn,k) can now
be updated by the Kalman filter:

qn(Xn,k) = N (Xn,k;µk
n|n,Σk

n|n),
T k

n = Y k
n −Hµk∗

n|n−1,

Sk
n = HΣk∗

n|n−1H
⊤ +R

k
n,

G = Σk∗
n|n−1H

⊤Sk−1

n ,

µk
n|n = µk∗

n|n−1 +GT k
n ,

Σk
n|n = (I −GH)Σk∗

n|n−1.

(5.29)

Such an update can be independently carried out for all targets.

5.4.1.2 Update for qn(Λ)

According to (5.16), (5.4) and (5.6), the variational distribution qn(Λ) is updated as
follows,

qn(Λ) ∝p̂n|n−1(Λ)p(Mn|Λ)exp
(
Eqn(θn) log p(θn|Mn,Λ)

)
=p̂n|n−1(Λ)exp(−Λsum)(Λsum)Mn

Mn! × 1
(Λsum)Mn

× exp
(

Eqn(θn)

Mn∑
j=1

K∑
k=0

δ[θn,j = k] log Λk

)

∝p̂n|n−1(Λ)
K∏

k=0
exp(−Λk)Λ

∑Mn
j=1 qn(θn,j=k)

k . (5.30)

Independent gamma turns out to be the conjugate prior for the likelihood function in
(5.30). Specifically, if we assume an independent initial prior p(Λ) = ∏K

k=0 p(Λk) where
each p(Λk) is a gamma distribution, then with prediction in (5.22) and update in (5.30),
qn(Λ) is always in the independent Gamma form, i.e. qn(Λ) = ∏K

k=0 qn(Λk) where each
qn(Λk) is a gamma distribution. Denote q∗

n−1(Λk) = G(Λk; ηk∗
n−1|n−1, ρ

k∗
n−1|n−1), where

G(η, ρ) is the Gamma distribution with shape parameter η and scale parameter ρ.
According to p̂n|n−1(Λ) in (5.22), the predictive prior for each Λk is

p̂n|n−1(Λk) =G(Λk; ηk∗
n|n−1, ρ

k∗
n|n−1),

ηk∗
n|n−1 =ηk∗

n−1|n−1γn−1 − γn−1 + 1, (5.31)
ρk∗

n|n−1 =ρk∗
n−1|n−1/γn−1,
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then the update for qn(Λk) is

qn(Λk) =G(Λk; ηk
n|n, ρ

k
n|n),

ηk
n|n =ηk∗

n|n−1 +
Mn∑
j=1

qn(θn,j = k), (5.32)

ρk
n|n =ρk∗

n|n−1/(ρk∗
n|n−1 + 1).

Consequently, each qn(Λk) can be updated independently.

5.4.1.3 Update for qn(θn)

The variational distribution qn(θn) can be updated according to (5.16), (5.5) and (5.6),
i.e.

qn(θn)∝ exp
(
Eqn(Λ)qn(Xn)log p(θn|Mn,Λ) log p(Yn|θn, Xn)

)
=

Mn∏
j=1

exp
(
Eqn(Λ)qn(Xn) log p(θn,j|Λ)ℓ(Yn,j|Xn,θn,j

)
)

∝
Mn∏
j=1

qn(θn,j), (5.33)

with each qn(θn,j) being

qn(θn,j) ∝exp
(
Eqn(Λ)qn(Xn) log p(θn,j|Λ)ℓ(Yn,j|Xn,θn,j

)
)

∝Λ0

V
δ[θn,j = 0] +

K∑
k=1

Λklkδ[θn,j = k], (5.34)

Λk = exp(Eqn(Λ) log Λk) = exp(ψ(ηk
n|n))ρk

n|n,

lk = N (Yn,j;Hµk
n|n, Rk)exp(−0.5Tr(R−1

k HΣk
n|nH

⊤)),

where Λk is for k = 0, 1, ..., K, lk is for k = 1, ..., K, and ψ(·) is the digamma function.
The µk

n|n,Σk
n|n are given in (5.29), and (5.34) is obtained by substituting (5.7), (5.2),

(5.29) and (5.32). It can now be seen that the variational distributions for each
association variable are independent, and each of them is a categorical distribution
specified (with a proportional constant) in (5.34). Similar to the updates for Xn,Λ,
the updates for the association θn can also be independently carried out for each θn,j.
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5.4.2 Initialisation

As a deterministic algorithm, the local optimum (i.e. q∗
n(Xn, θn,Λ)) found by the CAVI

is sensitive to the initial variational distribution. A good initialisation can prevent the
algorithm from being trapped in a bad local minimum and may also lead to faster
convergence. Therefore, a good initial variational distribution is important for our
tracker to perform an accurate and efficient multi-target tracking task.

A simple choice of initialisation is to employ the predictive distribution of target
state p̂n|n−1(Xn) to initialise qn(Xn). An alternative option utilises the prior distri-
bution p(θn|Mn,Λ) in (5.6) to initialise qn(θn). However, in our experiments, these
straightforward initialisations often caused the CAVI to converge to undesirable local
minima, resulting in track loss.

Therefore, this section presents an enhanced initialisation strategy for qn(θn).
Specifically, the setup for the initial association distribution q(0)

n (θn) is detailed. After
this initialisation, CAVI is performed by iteratively updating q(Λ) and qn(Xn), which
require the initial association distribution q(0)

n (θn), introduced below, for the calculation
of the update form.

The initial association distribution q(0)
n (θn) is defined as follows. First, independent

initial variational distributions are assumed assumes for each θn,j so as to be consistent
with the updated form in (5.33), that is,

q(0)
n (θn) =

Mn∏
j=1

q(0)
n (θn,j) (5.35)

Recall that the objective of the CAVI in our setup is to minimise the KL divergence
between qn(Xn)qn(θn)q(Λ) and the target distribution p̂n(Xn, θn,Λ|Yn). Therefore,
the best (but intractable) initial distribution for qn(θn,j) may be the marginal target
distribution p̂n(θn,j|Yn). A suboptimal choice would be p̂n(θn,j|Yn,j), which, under the
same approximate filtering law p̂n, only incorporates the information of the correspond-
ing measurement Yn,j rather than all measurements Yn. However, this suboptimal
distribution is still intractable except for the special case that the Gamma prior p̂n(Λk)
shares the same scale parameter ρk∗

n|n−1 in (5.31) for all k = 1, 2, ..., K. As a result,the
intractable p̂n(θn,j|Yn,j) is further approximated with p̂n(θn,j|Yn,j,Λ = Λ̂), which can
be regarded as an empirical Bayes approximation. Specifically, the hyperparameter Λ
(in θn,j’s prior), instead of being marginalised out, is specified by the point estimate Λ̂
that is obtained at the last time step n− 1. It is expected that our initial distribution
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p̂n(θn,j|Yn,j,Λ = Λ̂) will be more accurate as n increases, since this point estimate Λ̂
should gradually converge to the ground truth of Λ.

Therefore, by using p̂n(θn,j|Yn,j,Λ = Λ̂) as empirical Bayes approximation to the
suboptimal initial distribution for qn(θn,j), the designed initialisation strategy can be
written as follows:

q(0)
n (θn,j) =p̂n(θn,j|Yn,j,Λ = Λ̂) ∝ p̂n(θn,j, Yn,j|Λ = Λ̂)

=p(θn,j|Λ = Λ̂)
∫
ℓ(Yn,j|Xn,θn,j

)p̂n|n−1(Xn)dXn

=Λ̂0

V
δ[θn,j = 0] +

K∑
k=1

Λ̂kl
0
kδ[θn,j = k], (5.36)

l0k =N (Yn,j;Hµk∗
n|n−1, HΣk∗

n|n−1H
⊤ +Rk),

Λ̂ =Eq∗
n−1(Λ)Λ = [Λ̂0, Λ̂1, ..., Λ̂K ],

Λ̂k =Eq∗
n−1(Λ)Λk = ηk∗

n−1|n−1ρ
k∗
n−1|n−1,

where l0k is for k = 1, 2, ..., K, and Λ̂k (k = 0, 1, ..., K) is the estimate of Λk at the time
step n − 1. p̂n|n−1(Xn) is the predictive prior and µk∗

n|n−1,Σk∗
n|n−1 are given in (5.28).

Each q(0)
n (θn,j) is set to be p̂n(θn,j|Yn,j,Λ = Λ̂), where p̂n is the approximate filtering

probability law defined in Section 5.3.1 and (5.23). The evaluation of p̂n(θn,j|Yn,j,Λ = Λ̂)
in (5.36) is a direct result of (5.23), and its detailed derivation is shown in Appendix
5.A. This initial variational distribution q(0)

n (θn,j) has a similar form as the updated
qn(θn) in (5.33) and (5.34), and can also be independently evaluated for each θn,j.

5.4.3 ELBO computation

It is useful to compute the ELBO in (5.24) for each recursion of updates. The reasons
are: 1) It provides a convenient way to monitor the convergence. 2) It is practically
useful to check the implementation of the algorithm. 3) It reflects the quality of the
found variational distribution (for another example of this benefit of calculating ELBO,
see Chapter 6, where this property will be further illustrated and applied in Section 6.2
and 6.3). Recall that the ELBO is guaranteed to increase at each recursion of updates,
and the objective of our tracker is to maximise the ELBO. By monitoring the increment
of ELBO, we can assume that the algorithm converges once the increment of ELBO
at the latest recursion falls below a certain threshold. Moreover, if the increment of
ELBO resulting from any update is negative, the implementation of the algorithm
must be incorrect.
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The straightforward computation of the ELBO in (5.24) involves inversions of
non-diagonal matrices Σk

n|n and Σk∗
n|n−1, which can be computationally prohibitive for

a large number of targets. Here we adopt a relatively efficient way to evaluate the
ELBO based on a more easy-to-compute marginal likelihood. Such a technique was
first used to compute the ELBO in Section 5.3.7 in [128]. Specifically, if the q(Xn) is
the latest updated variational distribution (i.e. q(θn) has not been updated with the
current q(Xn)), the ELBO in (5.24) can be exactly expressed as follows,

F(qn) =
Mn∑
j=1

K∑
k=0

q(θn,j = k)
(
ψ(ηk

n|n) + log
ρk

n|n

q(θn,j = k)

)

− 1
2

Mn∑
j=1

K∑
k=1

qn(θn,j = k)
(
Y ⊤

n,jR
−1
k Yn,j + log detRk

)

+ 1
2

K∑
k=1

(
Y k

n

⊤
Rk

n

−1
Y k

n − T k
n

⊤
Sk

n

−1
T k

n + log detRk
n

detSk
n

)

+
[
D

2 log 2π + log 1
V

] Mn∑
j=1

qn(θn,j = 0)

−
K∑

k=0
ηk

n|nρ
k
n|n −KL(qn(Λ)||p̂n|n−1(Λ))

− 1
2DMn log 2π − log(Mn!), (5.37)

KL(qn(Λ)||p̂n|n−1(Λ))

=
K∑

k=0

[
−ηk∗

n|n−1 log ρk
n|n − log Γ(ηk

n|n) + (ηk
n|n − ηk∗

n|n−1)ψ(ηk
n|n) + ηk

n|n(ρk
n|n/ρ

k∗
n|n−1 − 1)

]

+
K∑

k=0

(
log Γ(ηk∗

n|n−1) + ηk∗
n|n−1 log ρk∗

n|n−1

)
, (5.38)

where Y k
n, R

k
n are given in (5.26); (5.27), and T k

n , S
k
n are given in the Kalman filter

update (5.29), and ηk
n|n, ρ

k
n|n, η

k∗
n|n−1, ρ

k∗
n|n−1 are given in (5.30)(5.31). Note that all these

terms have already been computed for updating the latest qn(Xn) and qn(λ). ψ(·) is the
digamma function and Γ(·) is the gamma function. D is the dimension of the vector of
a single measurement Yn,j, and V,Rk are defined in (5.2). The laborious derivation for
(5.37) is presented in Appendix 5.B. We emphasise again that the evaluation in (5.37)
only equals the exact ELBO in (5.24) when qn(Xn) is the latest updated variational
distribution.
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Algorithm 9: VB-AbNHPP tracker with rate estimation at time step n

1 Require: q∗
n−1(Xn−1), q∗

n−1(Λ), Yn,Mn, maximum iteration limit I, tolerance
threshold ϵ > 0.

2 Output: q∗
n(Xn), q∗

n(θn), q∗
n(Λ) .

3 Prediction for Xn: Evaluate µk∗
n|n−1,Σk∗

n|n−1 for p̂n|n−1(Xn) via (5.28).
4 Prediction for Λ: Evaluate ηk∗

n|n−1, ρ
k∗
n|n−1 for p̂n|n−1(Λ) via (5.31).

5 for j = 1, 2, ...,Mn do
6 Evaluate q(0)

n (θn,j) via (5.36), and initialise qn(θn,j)← q(0)
n (θn,j).

7 end
8 for i = 1, 2, ..., I do
9 for k = 1, 2, ..., K do

10 Evaluate ηk
n|n, ρ

k
n|n according to (5.32) for updating q(Λ).

11 end
12 for k = 1, 2, ..., K do
13 Evaluate Rk

n, Y
k
n according to (5.26)(5.27).

14 Compute µk
n|n,Σk

n|n, T
k
n , S

k
n via (5.29) for updating qn(Xn,k).

15 end
16 Evaluate the ELBO F (i)

n according to (5.37).
17 if F (i)

n − F (i−1)
n < ϵ ∧ i ≥ 2 then

18 break
19 end
20 for j = 1, 2, ...,Mn do
21 Update qn(θn,j) according to (5.34).
22 end
23 end
24 Set q∗

n(Xn) = ∏K
k=1 qn(Xn,k), q∗

n(Λ) = ∏K
k=1 qn(Λk) and q∗

n(θn) = ∏Mn
j=1 qn(θn,j).

The last lines in (5.37) and (5.38) are constants through each iteration of CAVI,
and hence can be omitted when monitoring the increments of F(qn). In a common
tracking scenario where the dynamic transition in (5.9) and the positional measurement
function are both independent for different coordinates, Rk, R

k
n, S

k
n are all diagonal

matrices. Subsequently, all matrix inversions in (5.37) can be computed easily.

5.4.4 Algorithm

Finally, the approximate filtering algorithm at time step n of our VB-AbNHPP tracker
is summarised in Algorithm 9. In brief, this algorithm first 1) evaluates the predictive
distribution for Xn,Λ; then 2) sets the initialisation variational distribution for θn; and
3) carries out the CAVI until convergence. There are many steps in the algorithm that
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can be parallelised. Specifically, the evaluation of q(0)
n (θn) and the update of qn(θn) can

be paralleled for each association, and the update for qn(Xn) can be paralleled for each
target. Moreover, the ELBO computation can also be further accelerated by exploring
the parallel computing of the summands in (5.37).

The ELBO evaluation step (5.37) in Algorithm 9 can be neglected if the computa-
tional power is limited. In this case, we can either monitor the change in statistics of
the variational distribution (e.g. the mean of q(Xn)) to check for convergence, or we
can directly set the algorithm to perform a predefined number of iterations.

5.5 VB-AbNHPP tracker with known Poisson rates

By assuming known Poisson rates, the VB-AbNHPP tracker can be implemented with
a simplified procedure. Since the derivation of this tracker is very similar to the that
in Section 5.4, here we only present a brief derivation.

When the Poisson rate Λ is known, e.g. from prior knowledge or estimation results
as in Section 5.4, the exact filtering strategy in (5.11) simplifies to

p(Xn, θn|Y1:n,Λ) ∝p(Yn|θn, Xn)p(θn|Mn,Λ) (5.39)

×
∫
p(Xn−1|Y1:n−1,Λ)p(Xn|Xn−1)dXn−1.

In this Section, similar to Section 5.4, we assume that the parameters K and R1:K

are known and are always treated as implicit conditions throughout the equations
and discussion. Subsequently, the variables defined for the general dynamic system
considered in Section 5.3 are now Zn = Xn = {Xn, θn}, Yn = Yn and Ξ = ∅. Comparing
the optimal filter recursion given in (5.12) with the exact optimal filter recursion for
the association based NHPP system in (5.11), the densities f and g in (5.12) become

f(Xn|Zn−1) =p(θn|Mn,Λ)p(Xn|Xn−1),
g(Yn|Zn) =p(Yn|θn, Xn). (5.40)

Since now Ξ = ∅, we construct our approximate predictive prior p̂n|n−1(Zn) according
to (5.17) in Section 5.3.3.2, i.e.

p̂n|n−1(Xn, θn) =p(θn|Mn,Λ)
∫
p(Xn|Xn−1)q∗

n−1(Xn−1|Λ)dXn−1. (5.41)
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Therefore, according to (5.13) on page 147, the probability law p̂n for the approximate
filtering at the time step n satisfies

p̂n(Yn, Xn, θn) =p(Yn|θn, Xn)p(θn|Mn,Λ)p̂n|n−1(Xn), (5.42)

where the proportional symbol in (5.13) is now replaced by the equality since the
normalisation constant can be easily verified to be 1.

5.5.1 Coordinate ascent update

Based on Section 5.3.2, here we assume the factorisation for our mean-field family
is qn(Xn, θn) = qn(Xn)qn(θn). The aim of our VB-AbNHPP tracker is to minimise
the KL divergence KL(qn(Xn)qn(θn)||p̂n(Xn, θn|Yn)), or equivalently, to maximise the
ELBO in (5.15), which is now

F(qn) = Eqn(Xn)qn(θn) log p̂n(Xn, θn, Yn)
qn(Xn)qn(θn) , (5.43)

where p̂n(Xn, θn, Yn) is given in (5.42). To this end, it iteratively updates qn(Xn) and
qn(θn) according to (5.16) until convergence. We now derive these updates.

5.5.1.1 Update for qn(Xn)

According to (5.16) on page 148, the update for Xn can be expressed as

qn(Xn) ∝p̂n(Xn)exp
(
Eqn(θn) log p(Yn|θn, Xn)

)
.

By comparing this update with the Xn update in (5.25) from Section 5.4, we can see
that these two updates are identical. Moreover, the predictive prior in (5.41) suggests
the following predictive prior for Xn:

p̂n|n−1(Xn) =
∫
p(Xn|Xn−1)q∗

n−1(Xn−1|Λ)dXn−1, (5.44)

which is also identical to the predictive prior in (5.22) from Section 5.4. Consequently,
both the prediction and update steps for q(Xn) coincide with (5.28) and (5.29) from
Section 5.4.1.1.
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5.5.1.2 Update for qn(θn)

The variational distribution qn(θn) can be updated according to (5.16), (5.5) and (5.6)
on page 144, i.e.

qn(θn) ∝p(θn|Mn,Λ)exp
(
Eqn(Xn) log p(Yn|θn, Xn)

)
=

Mn∏
j=1

p(θn,j|Λ)exp
(
Eqn(Xn) log ℓ(Yn,j|Xn,θn,j

)
)

∝
Mn∏
j=1

qn(θn,j), (5.45)

qn(θn,j) ∝p(θn,j|Λ)exp
(
Eqn(Xn) log ℓ(Yn,j|Xn,θn,j

)
)

∝Λ0

V
δ[θn,j = 0] +

K∑
k=1

Λklkδ[θn,j = k], (5.46)

lk = N (Y n,j;Hµk
n|n, Rk)exp(−0.5Tr(R−1

k HΣk
n|nH

⊤)),

where µk
n|n,Σk

n|n are given in (5.29), and (5.34) is obtained by substituting (5.7), (5.2)
and (5.29).

5.5.2 Initialisation

We suggest an initialisation strategy similar to that in Section 5.4.2: at time step n,
the algorithm performs the CAVI by first setting the initial association distribution
q(0)

n (θn) as

q(0)
n (θn) =

Mn∏
j=1

q(0)
n (θn,j) (5.47)

q(0)
n (θn,j) =p̂n(θn,j|Yn,j) ∝ p̂n(θn,j, Yn,j)

=
∫
p̂n(Xn, θn, Yn)dYn,j−dθn,j−dXn

=p(θn,j|Λ)
∫
ℓ(Yn,j|Xn,θn,j

)p̂n|n−1(Xn)dXn (5.48)

∝Λ0

V
δ[θn,j = 0] +

K∑
k=1

Λkl
0
kδ[θn,j = k],

l0k =N (Yn,j;Hµk∗
n|n−1, HΣk∗

n|n−1H
⊤ +Rk).
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Similar to Section 5.4.2, (5.47) assumes independent initial variational distributions
for each θn,j to be consistent with the updated form in (5.45). Each q(0)

n (θn,j) is set
to be p̂n(θn,j|Yn,j) where p̂n is the approximate filtering probability law defined in
Section 5.3.1 and (5.42). p̂n|n−1(Xn), µk∗

n|n−1,Σk∗
n|n−1 are given in (5.28). Recall that

the objective of the CAVI in our setup is to minimise the KL divergence between
qn(Xn)q(θn) and the target distribution p̂n(Xn, θn|Yn). The p̂n(θn,j|Yn,j) is expected
to be a good initialisation for q(0)

n (θn,j) since it incorporates the information of the
corresponding measurement Yn,j under the same probability law (i.e. p̂n) of the target
distribution p̂n(Xn, θn|Yn).

5.5.3 ELBO computation

With known Poisson rates Λ, the ELBO in (5.43) is now simpler than that in Section
5.4. Similar to Section 5.4.3, here we present the efficient ELBO evaluation that does
not require inversions of non-diagonal matrices Σk

n|n and Σk∗
n|n−1. Specifically, if the

q(Xn) is the latest updated variational distribution (i.e. the q(θn) has not been updated
with the current q(Xn)), the ELBO in (5.43) can be exactly expressed as follows,

F(qn) =− 1
2

Mn∑
j=1

K∑
k=1

qn(θn,j = k)
(
Y ⊤

n,jR
−1
k Yn,j + log detRk

)

+
Mn∑
j=1

K∑
k=0

qn(θn,j = k) log Λk

Λsqn(θn,j = k)

+ 1
2

K∑
k=1

(
Y k

n

⊤
Rk

n

−1
Y k

n − T k
n

⊤
Sk

n

−1
T k

n + log detRk
n

detSk
n

)

+
[
D

2 log 2π + log 1
V

] Mn∑
j=1

qn(θn,j = 0)

− 1
2DMn log 2π, (5.49)

where, as in Section 5.4.3, Y k
n, R

k
n are provided in (5.26) and (5.27), while T k

n , S
k
n are

given in the Kalman filter update (5.29). Note that all these terms have already
been calculated for the latest q(Xn) update. D represents the dimension of a single
measurement vector Yn,j, and V,Rk are defined in (5.2) on page 143. Since the
derivation of (5.49) is a simplified version of the process used for (5.37), which can be
found in Appendix 5.B, we will not present the derivation here.

In (5.49), the last term is a constant during the current approximate filtering step,
so it can be omitted when monitoring the increments of F(qn). In typical tracking
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Algorithm 10: VB-AbNHPP tracker (with known rate) at time step n

1 Require: q∗
n−1(Xn−1), Yn,Mn, maximum iteration limit I, tolerance threshold

ϵ > 0.
2 Output: q∗

n(Xn), q∗
n(θn).

3 Evaluate µk∗
n|n−1,Σk∗

n|n−1 for p̂n|n−1(Xn) according to (5.28).
4 for j = 1, 2, ...,Mn do
5 Evaluate q(0)

n (θn,j) according to (5.48), and set qn(θn,j)← q(0)
n (θn,j).

6 end
7 for i = 1, 2, ..., I do
8 for k = 1, 2, ..., K do
9 Evaluate Rk

n, Y
k
n according to (5.26) and (5.27).

10 Compute µk
n|n,Σk

n|n, T
k
n , S

k
n according to (5.29) for updating qn(Xn,k).

11 end
12 Evaluate the ELBO F (i)

n according to (5.49).
13 if F (i)

n − F (i−1)
n < ϵ ∧ i ≥ 2 then

14 break
15 end
16 for j = 1, 2, ...,Mn do
17 Update qn(θn,j) according to (5.46).
18 end
19 end
20 Set q∗

n(Xn) = ∏K
k=1 qn(Xn,k), and q∗

n(θn) = ∏Mn
j=1 qn(θn,j).

scenarios, both the dynamic transition in (5.9) and the positional measurement function
are independent across different coordinates. Consequently, Rk, R

k
n, S

k
n are all diagonal

matrices, allowing for straightforward computation of all matrix inversions in (5.49).

5.5.4 Algorithm

The approximate filtering algorithm at time step n for our VB-AbNHPP tracker
is summarised in Algorithm 10. Many steps in this algorithm can be parallelised,
similar to Algorithm 9. Specifically, the evaluation of q(0)

n (θn) and the update of qn(θn)
can be performed in parallel for each association, while the update for qn(Xn) can
be parallelised for each target. Additionally, the computation of the ELBO can be
accelerated by utilising parallel computing for the summands in (5.49).

It is worth noting that the pseudo-measurement defined in (5.26) and (5.27) also
appears in the well-known PMHT algorithm. The association update in the PMHT
algorithm has a similar (but not identical) structure to the variational update derived
in (5.46). The primary distinction between the PMHT and our tracker is that PMHT
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is developed as a batch algorithm and relies on the EM algorithm, which specifically
provides a point estimate for the target state. Although it is theoretically possible to
extend the PMHT to an online tracker within a similar approximate filtering framework
introduced in Section 5.3.1, its point estimate on the target state may struggle to
provide a reliable filtering prior approximation compared to the Gaussian approximation
obtained here within the variational Bayes framework.

5.6 Simulation

In this section, we first evaluate the VB-AbNHPP tracker with known rate from
Algorithm 10 in simulated scenarios and compare it to other trackers in subsection
5.6.1. Then, in subsection 5.6.2, we briefly demonstrate that the target and clutter’s
Poisson rates can be accurately estimated using the proposed VB-AbNHPP tracker
with unknown rates, as presented in Algorithm 9.

5.6.1 Multi-object tracking with known rate

Here, we compare our VB-AbNHPP tracker in Algorithm 10 with the PF-NHPP tracker
[144], the Rao-Blackwellised Gibbs AbNHPP (G-AbNHPP) tracker (Algorithm 2, [50]),
and the ET-JPDA filter [147] to demonstrate its efficacy.

Table 5.1 Tracking performance comparisons

RMSE (mean ±1σ) | track loss percentage (%) | CPU time (s)
dataset K PF-NHPP G-AbNHPP ET-JPDA

1 2 7.69±0.64 | 0.00 | 4.05 5.50±0.34 | 0.00 | 0.22 7.49±1.06 | 4.50 | 5e-4
2 4 N/A | 51.8 | 15.9 5.63±0.13 | 0.00 | 0.57 8.40±2.97 | 8.75 | 2e-3
3 10 − 6.06±0.25 | 0.10 | 0.67 9.41±1.99 | 16.3 | 0.01
4 20 − 6.25±0.26 | 0.65 | 2.31 N/A | 22.6 | 0.03

RMSE (mean ±1σ) | track loss percentage (%) | CPU time (s)
dataset K VB-AbNHPP(1) VB-AbNHPP

1 2 5.64±0.58 | 0.00 | 3e-6 5.51±0.43 | 0.00 | 6e-6
2 4 5.91±0.37 | 0.25 | 6e-6 5.75±0.29 | 0.00 | 1e-5
3 10 6.50±0.50 | 2.20 | 8e-6 6.03±0.32 | 0.70 | 2e-5
4 20 7.31±0.70 | 4.05 | 1e-5 6.30±0.40 | 1.90 | 3e-5

We assume that targets move in a 2D surveillance area with the state in the d-th
dimension being Xd

n,k = [xd
n,k, ẋ

d
n,k]T which contains the target’s position and velocity.
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Four datasets with the target number increasing from 2, 4, 10, to 20 are generated
with each dataset containing 100 Monte Carlo runs with different synthetic trajectories
and measurements. For all datasets, we utilise the constant velocity model with a
transition density in (5.9), where the transitions in two dimensions are independent
and for each d-th dimension, we have

F d
n,k =

1 τ

0 1

 , Qd
n,k = 25

τ 3/3 τ 2/2
τ 2/2 τ

 , Bd
n,k = 0. (5.50)

We set the total time steps to 50, and the time interval between observations is τ = 1s.
The target is simulated as an extended target with an elliptical extent which are fixed
over time, and its covariance in (5.2) is set to Rk = 100I2, (k = 1, ..., K) where I2 is a
2-D identity matrix. The target rates are set to 5 for all targets in the surveillance
area. The clutter density (i.e. Λ0/V ) is set as 10−5 per unit area, and correspondingly,
the average Λ0 for datasets 1 to 4 is 24, 50, 93, and 150, respectively. To visualise the
tracking scenario of the datasets, in Fig. 5.2, we present one example of measurement
data from each dataset. We can see that the clutter is dense and targets frequently
come close to each other, making it a challenging scenario for multi-target tracking.

The metrics utilised to measure the tracking performance are the RMSE and the
percentage of track loss. First, we define a track as successful if the corresponding
target is tracked for at least 85% of its lifespan. A target is considered tracked if
the estimated location is within a cut-off distance (50 in this experiment) from the
ground truth. The percentage of track loss for each run is computed as the ratio of
the number of unsuccessful track(s) and the total number of tracks. Then, the overall
track loss performance is evaluated by averaging the track loss percentage over all 100
runs. For the fully tracked runs that have no track loss, we calculate the RMSE and
its mean and standard deviation over 100 Monte Carlo runs. Meanwhile, to evaluate
the computational complexity, we monitor the CPU time required at a single time
step and average it over all time steps (System: Intel(R) Core(TM) i7-8550 CPU@1.80
GHz, 8 GB RAM). The overall CPU time presented in the table is the averaged value
across all runs.

The tracking results of all methods are presented in Table 5.1. For the PF-NHPP
tracker, we employ 3000 particles in the particle filtering implementation. For the
G-AbNHPP tracker, we employ a Rao-Blackwellisation scheme (details can be found
in [146, 50]) and implement it using 100 particles with a 40-iteration burn-in time for
datasets 1 and 2, and 50 particles with a 20-iteration burn-in time for datasets 3 and 4
to reduce the computational time. To visualise the efficacy of our iterative VB method,
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Fig. 5.2 Four examples of measurement data with increasing target and clutter density:
from left to right, top to bottom, the number of targets is 2, 4, 10, and 20, and the
average Poisson rate is 24, 50, 93, and 150.

we present results for both the VB-AbNHPP(1) tracker that uses only one iteration
(I = 1 in Algorithm 9), and the standard VB-AbNHPP tracker that performs multiple
iterations until convergence. For the standard VB-AbNHPP tracker, the maximum
iteration number I and threshold ϵ for ELBO increment in Algorithm 9 are set as 100
and 1e-2. In our experiments, such a setup usually leads to convergence in less than 10
iterations.

From the Table 5.1, we can observe that our method has a promising performance
in both time efficiency and tracking accuracy. In terms of efficiency, our VB-AbNHPP
tracker has a huge advantage over two sampling-based methods, i.e. the PF-NHPP
tracker and the G-AbNHPP tracker; it is also faster than the ET-JPDA tracker, and
the difference becomes more evident when the target number increases. As for the
tracking performance, the ET-JPDA tracker is much more prone to losing tracks, and
in dataset 4 where the target number reaches 20, it has no fully tracked run in all 100
runs. Comparatively, our method significantly outperforms the ET-JPDA with a much
lower RMSE and track loss percentage across all datasets. The PF-NHPP tracker, while
requiring the longest time of the four methods, has the largest RMSE value in dataset
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Fig. 5.3 Estimated trajectories (colored lines) of VB-AbNHPP (Algorithm 9) for the
tracking and rate estimation task in Section 5.6.2. The black dashed lines are the
ground truth.

1, and it fails to track all targets when the target number increases to 4 or larger.
Meanwhile, it can be seen that, given an adequate sample size, the G-AbNHPP tracker
has the smallest RMSE; however, when the target number is larger such as in datasets 3
and 4, the tracking performance has to be compromised by minimising the sample size
so as to track targets in a timely manner. Therefore, compared with the G-AbNHPP
tracker, our method can obtain a comparable tracking performance with an advantage
in implementation efficiency. Finally, it can be seen that the tracking performance of
our VB-AbNHPP tracker is greatly enhanced compared with the VB-AbNHPP(1) that
uses only one iteration. It demonstrates that the iterative coordinate ascent updates
indeed improve the tracking performance, and the minor extra computational time is
worthwhile.

5.6.2 Tracking with rate estimation

In this subsection, we give a simple demonstration of rate estimation with the VB-
AbNHPP tracker in Algorithm 9; the target extent can be estimated in a similar fashion
if needed. We consider a tracking and rate estimation task where 10 targets move in
different directions from initial positions around the origin point. A synthetic dataset
is generated for 200 time steps with the system models in Section 5.6.1, and 10 targets’
Poisson rates are randomly generated from 1.5 to 10. The ground truth of 10 targets’
trajectories over 200 time steps is shown in Fig. 5.3, and the ground truth of each
target’s Poisson rate is shown in Fig. 5.4. The clutter density is set to 10−5 per unit
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Fig. 5.4 VB-AbNHPP (Algorithm 9) rate estimation over 200 time steps for the tracking
and rate estimation task in Section 5.6.2. The ground truth of the Poisson rates of
targets and clutter is shown by the black horizontal line in each subfigure. The red
curve is the mean of q∗

n(Λ), and the light red shade is the confidence region of ±2
standard deviation of q∗

n(Λ).

area, and the clutter rate is 5240 for the considered tasks. The measurements from all
time steps are shown as gray dots in Fig. 5.3, appearing as a grey background due to
their excessively large number.

We use the VB-AbNHPP in Algorithm 9 to simultaneously track targets and
estimate target and clutter rates. In particular, a Gamma distribution with shape
parameter 1 and scale parameter 5 is set as the initial Poisson rate prior for all 10
targets and clutter. The γn in (5.31) is chosen as γn = 1− 0.1× (max{1, n− 10})−0.9,
i.e. γn is fixed as 0.9 for the first 11 time steps, then strictly increases and approaches 1
when n is large. The choice of {γ}n is selected corresponding to Section 5.3.3.2, where
γn−1 ∈ (0, 1], and the sequence {γ}n should be monotonically increasing. As with our
previous experiments, the prior of initial target state is set as the ground truth, and
I = 100, ϵ = 0.01 are used to end the iterative updates.
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A successful tracking result of VB-AbNHPP is shown in Fig. 5.3, where the
estimated trajectories are overlapped with the ground truth. The rate estimation
results are shown in Fig. 5.4. As time goes on, the converged variational distribution
q∗

n(Λ) has a smaller variance and its mean successfully converges to the ground truth
rate for all targets and clutter. This agrees with our anticipation in Section 5.3.3.2
that q∗

n(Λ) would eventually converge to ground truth Λ as a point estimator. Note
that these accurate estimation results for different ground truths of rates are obtained
with the identical initial prior and the decreasing sequence {γ}n. In particular, the
ground truth of clutter rate is far from the specified initial prior. This demonstrates
the robustness of the rate estimation of VB-AbNHPP under an inaccurate initial prior.

5.7 Conclusion

In this chapter, we propose an online VB-AbNHPP tracker and an adaptive tracker
that can simultaneously perform the tracking and parameter learning of the target
and clutter Poisson rates, based on a general coordinate ascent variational filtering
framework developed here. The developed tracker offers a fast and parallelisable
implementation with competitive tracking performance, which makes it promising
in large scale target tracking scenarios. While we only derive the VB-AbNHPP
tracker with rate estimation, other parameters such as measurement covariances/taregt
extents can be learnt in a similar manner. The current dynamic model in the DBN
in Section 5.2 can also be replaced by a more complicated intent-driven model (e.g.
in Chapter 2 and Chapter 3, [61, 94]) or leader-follower model [142, 152], such that
the same framework can still be applied to infer the targets’ destination/leader in a
clutter scenario. Moreover, a more accurate conditionally factorised variational Bayes
described in Chapter 4 and [127] will be considered for more challenging tracking
scenarios that involve frequent track coalescence and/or in which target rates are low
and in heavy clutter. These extensions will be presented in future work.
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Appendix 5.A Evaluation of the initial variational
distribution

Here we provide a detailed derivation of the initial variational distribution p̂n(θn,j|Yn,j,Λ =
Λ̂) in (5.36). According to the definition of p̂n in (5.23), we have

p̂n(Xn, θn,Λ, Yn) =p(Yn|θn, Xn)p(θn|Mn,Λ)p̂n|n−1(Xn)p(Mn|Λ)p̂n|n−1(Λ)/cM , (5.51)

where cM is a normalisation constant. Then by marginalising Yn, Xn, θn out of (5.51),
we have

p̂n(Λ) =
∑
θn

∫ ∫
p̂n(Xn, θn,Λ, Yn)dYndXn = p(Mn|Λ)p̂n|n−1(Λ)/cM , (5.52)

where cM is the same constant in (5.51). Divide (5.51) by (5.52):

p̂n(Xn, θn, Yn|Λ) = p(Yn|θn, Xn)p(θn|Mn,Λ)p̂n|n−1(Xn)

= p̂n|n−1(Xn)
Mn∏
j=1

ℓ(Yn,j|Xn,θn,j
)p(θn,j|Λ), (5.53)

where the last equality follows from (5.5) and (5.6). Denote Yn,j− as all measurements
in Yn except for the Yn,j, and θn,j− is defined similarly. For any j = 1, 2, ...,Mn, by
marginalising Yn,j−, Xn, θn,j− out of (5.53):

p̂n(θn,j, Yn,j|Λ) =
∑

θn,j−

∫ ∫
p̂n(Xn, θn, Yn|Λ)dXndYn,j−

=
∫
p̂n|n−1(Xn)ℓ(Yn,j|Xn,θn,j

)dXn p(θn,j|Λ)
∏

i=1:Mn,i ̸=j

∫
ℓ(Yn,i|Xn,θn,i

)dYn,i

∑
θn,i

p(θn,i|Λ)

=p(θn,j|Λ)
∫
p̂n|n−1(Xn)ℓ(Yn,j|Xn,θn,j

)dXn

=p(θn,j|Λ)
(

1
V
δ[θn,j = 0] +

K∑
k=1

l0kδ[θn,j = k]
)

= 1
Λsum

(
Λ0

V
δ[θn,j = 0] +

K∑
k=1

Λkl
0
kδ[θn,j = k]

)
. (5.54)

where l0k is defined in (5.36). Note that the integral in the third last line in (5.54)
is either a Gaussian marginal likelihood l0k if θn,j ̸= 0, or the ℓ(Yn,j|Xn,0) in (5.2)
otherwise (recall that Xn does not include Xn,0 as assumed Section 5.2). The last line
in (5.54) follows from (5.7) and the nature of Kronecker delta function. Finally, (5.36)
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is obtained by omitting constant Λsum in (5.54) and substituting Λ̂k = Eq∗
n−1(Λ)Λk to

each Λk.

Appendix 5.B Derivation of the ELBO for tracking
and rate estimation

This appendix derives the ELBO in (5.37) for implementing the VB-AbNHPP tracker
with rate estimation. First, we introduce the following Lemma for calculating the
summation of quadratic forms:

Lemma 5.B.1. For symmetric and invertible matrix Ci ∈ RD×D, and vectors x,mi ∈
RD×1 (i = 1, 2, ..., N), we have

N∑
i=1
−1

2(x−mi)⊤C−1
i (x−mi) = −1

2(x− µ)⊤Σ−1(x− µ) + 1
2µ

⊤Σ−1µ− 1
2

N∑
i=1

m⊤
i C

−1
i mi,

Σ =
(

N∑
i=1

C−1
i

)−1

, µ =
(

N∑
i=1

C−1
i

)−1 N∑
i=1

C−1
i mi.

(5.55)

A special case often encountered is that the N symmetric matrices Ci differ only in
scale, i.e. we have Ci = C/ωi for i = 1, 2, ..., N . In this case, it is straightforward to
derive the following from (5.55):

N∑
i=1
−ωi

2 (x−mi)⊤C−1(x−mi)

=− 1
2(x− µ)⊤Σ−1(x− µ) + 1

2µ
⊤Σ−1µ− 1

2

N∑
i=1

ωim
⊤
i C

−1mi,

Σ = C∑N
i=1 ωi

, µ =
∑N

i=1 ωimi∑N
i=1 ωi

.

(5.56)

Proof. First note that a single quadratic form (x − µ)⊤Σ−1(x − µ) can always be
rewritten as

(x− µ)⊤Σ−1(x− µ) = x⊤Σ−1x− x⊤Σ−1µ− (Σ−1µ)⊤x+ µ⊤Σ−1µ. (5.57)
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Then

N∑
i=1
−1

2(x−mi)⊤C−1
i (x−mi)

=
N∑

i=1
−1

2

[
x⊤C−1

i x− x⊤C−1
i mi −

(
C−1

i mi

)⊤
x+m⊤

i C
−1
i mi

]

=− 1
2

x⊤
N∑

i=1
C−1

i x− x⊤
N∑

i=1
C−1

i mi −
(

N∑
i=1

C−1
i mi

)⊤

x

− 1
2

N∑
i=1

m⊤
i C

−1
i mi (5.58)

Comparing the terms in the bracket with (5.57), we can find that it matches the
quadratic form −1

2(x− µ)⊤Σ−1(x− µ) in (5.57) if

Σ−1 =
N∑

i=1
C−1

i , Σ−1µ =
N∑

i=1
C−1

i mi, (5.59)

which suggests that Σ, µ being

Σ =
(

N∑
i=1

C−1
i

)−1

, µ =
(

N∑
i=1

C−1
i

)−1 N∑
i=1

C−1
i mi. (5.60)

Now substitute (5.60), or equivalently (5.59), back to (5.58), we have

N∑
i=1
−1

2(x−mi)⊤C−1
i (x−mi)

=− 1
2

x⊤
N∑

i=1
C−1

i x− x⊤
N∑

i=1
C−1

i mi −
(

N∑
i=1

C−1
i mi

)⊤

x

− 1
2

N∑
i=1

m⊤
i C

−1
i mi

=− 1
2

[
x⊤Σ−1x− x⊤Σ−1µ−

(
Σ−1µ

)⊤
x
]
− 1

2

N∑
i=1

m⊤
i C

−1
i mi

=− 1
2(x− µ)⊤Σ−1(x− µ) + 1

2µ
⊤Σ−1µ− 1

2

N∑
i=1

m⊤
i C

−1
i mi, (5.61)
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We now begin deriving the ELBO in (5.37). Using (5.22) on page 152, we first
rewrite the ELBO in (5.24) as follows

F(qn) =Eqn(θn)qn(Xn) log p̂n|n−1(Xn)p(Yn|θn, Xn)
qn(Xn)

+ Eqn(Λ)Eqn(θn) [log p(θn|Mn,Λ)p(Mn|Λ)− log qn(θn)]
+ Eqn(Λ)

[
log p̂n|n−1(Λ)− log qn(Λ)

]
. (5.62)

Recognise that the last line in (5.62) is −KL(qn(Λ)||p̂n|n−1(Λ)) which can be computed
as in (5.38). We now compute the second line in (5.62). First using (5.6),(5.7), (5.4),
and (5.33), we have

Eqn(θn) [log p(θn|Mn,Λ)p(Mn|Λ)− log qn(θn)]

= log p(Mn|Λ) + Eqn(θn)

Mn∑
j=1

[
log p(θn,j|Λ)− log qn(θn,j)

]

= log p(Mn|Λ) +
Mn∑
j=1

K∑
k=0

qn(θn,j = k) log p(θn,j = k|Λ)
qn(θn,j = k)

=
Mn∑
j=1

K∑
k=0

qn(θn,j = k) log Λk

qn(θn,j = k) − Λsum − log(Mn!).

Proceeding to compute its expectation with respect to qn(Λ) in (5.32), we obtain the
second line in (5.62) as follows

Eqn(Λ)Eqn(θn) [log p(θn|Mn,Λ)p(Mn|Λ)− log qn(θn)]

=
Mn∑
j=1

K∑
k=0

qn(θn,j = k)
(

log
ρk

n|n

qn(θn,j = k) + ψ(ηk
n|n)

)
−

K∑
k=0

ηk
n|nρ

k
n|n − log(Mn!). (5.63)

Finally, we move on to the first line in (5.62). We rewrite it as

Eqn(θn)qn(Xn) log p̂n|n−1(Xn)p(Yn|θn, Xn)
qn(Xn)

=Eqn(Xn)
[
− log qn(Xn) + log p̂n|n−1(Xn) + Eqn(θn) log p(Yn|θn, Xn)

]
. (5.64)

Recall that when q(Xn) is just updated according to (5.25), we have

qn(Xn) =
p̂n|n−1(Xn)exp

(
Eqn(θn) log p(Yn|θn, Xn)

)
∫
p̂n|n−1(Xn)exp

(
Eqn(θn) log p(Yn|θn, Xn)

)
dXn

, (5.65)
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where the denominator is the normalisation constant that does not depend on Xn.
Substituting (5.65) into (5.64) yields

Eqn(θn)qn(Xn) log p̂n|n−1(Xn)p(Yn|θn, Xn)
qn(Xn)

=Eqn(Xn)
[
log

∫
p̂n|n−1(Xn)exp

(
Eqn(θn) log p(Yn|θn, Xn)

)
dXn

]
= log

∫
p̂n|n−1(Xn)exp

(
Eqn(θn) log p(Yn|θn, Xn)

)
dXn, (5.66)

where the last line follows because the term in the bracket is a constant that does not de-
pend onXn. Now, to continue to evaluate (5.66), we first compute Eqn(θn) log p(Yn|θn, Xn),
which can be expressed as follows using (5.5) and (5.2)

Eqn(θn) log p(Yn|θn, Xn) = Eqn(θn)

Mn∑
j=1

log ℓ(Yn,j|Xn,θn,j
)

=
Mn∑
j=1

K∑
k=0

qn(θn,j = k) log ℓ(Yn,j|Xn,k)

=
Mn∑
j=1

K∑
k=1

qn(θn,j = k)
[
−1

2(Yn,j −HXn,k)⊤R−1
k (Yn,j −HXn,k)− D

2 log 2π − 1
2 log detRk

]

+
Mn∑
j=1

qn(θn,j = 0) log 1
V

=
K∑

k=1

Mn∑
j=1
−1

2(Yn,j −HXn,k)⊤
(

Rk

qn(θn,j = k)

)−1

(Yn,j −HXn,k) +
Mn∑
j=1

qn(θn,j = 0) log 1
V

− 1
2

Mn∑
j=1

K∑
k=1

qn(θn,j = k) log detRk −
D

2 log 2π
Mn∑
j=1

K∑
k=1

qn(θn,j = k). (5.67)

Note that we can rewrite the last term in (5.67) as

−D2 log 2π
Mn∑
j=1

K∑
k=1

qn(θn,j = k) = −D2 log 2π
Mn∑
j=1

(1− qn(θn,j = 0))

= D

2 log 2π
Mn∑
j=1

qn(θn,j = 0)− DMn

2 log 2π. (5.68)
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Also, by using the formula for summation of quadratic terms in (5.56) from Lemma
5.B.1, we have

Mn∑
j=1
−1

2(Yn,j −HXn,k)⊤
(

Rk

qn(θn,j = k)

)−1

(Yn,j −HXn,k)

=− 1
2(Y k

n −HXn,k)⊤Rk
n

−1(Y k
n −HXn,k) + 1

2Y
k
n

⊤
Rk

n

−1
Y k

n

− 1
2

Mn∑
j=1

qn(θn,j = k)Y ⊤
n,jR

−1
k Yn,j (5.69)

with Y k
n, R

k
n defined in (5.27),(5.26). Now, by substituting both (5.69) and (5.68) back

to (5.67), we have

Eqn(θn) log p(Yn|θn, Xn)

=
K∑

k=1

−1
2(Y k

n −HXn,k)⊤Rk
n

−1(Y k
n −HXn,k) + 1

2Y
k
n

⊤
Rk

n

−1
Y k

n −
1
2

Mn∑
j=1

qn(θn,j = k)Y ⊤
n,jR

−1
k Yn,j


− 1

2

Mn∑
j=1

K∑
k=1

qn(θn,j = k) log detRk +
Mn∑
j=1

qn(θn,j = 0) log 1
V

+ D

2 log 2π
Mn∑
j=1

qn(θn,j = 0)− DMn

2 log 2π

=
K∑

k=1

[
−1

2(Y k
n −HXn,k)⊤Rk

n

−1(Y k
n −HXn,k)− D

2 log 2π − 1
2 log detRk

n

]

+
K∑

k=1

[
D

2 log 2π + 1
2 log detRk

n

]
− 1

2

Mn∑
j=1

K∑
k=1

qn(θn,j = k)
(
Y ⊤

n,jR
−1
k Yn,j + log detRk

)

+ 1
2

K∑
k=1

Y k
n

⊤
Rk

n

−1
Y k

n +
(
D

2 log 2π + log 1
V

) Mn∑
j=1

qn(θn,j = 0)− DMn

2 log 2π

=
K∑

k=1
logN (Y k

n;HXn,k, R
k
n) + Cx, (5.70)

where Cx is a constant that does not depend on Xn,k, which is defined as

Cx =1
2

K∑
k=1

(
log detRk

n + Y k
n

⊤
Rk

n

−1
Y k

n

)
− 1

2

Mn∑
j=1

K∑
k=1

qn(θn,j = k)
(
Y ⊤

n,jR
−1
k Yn,j + log detRk

)

+ DK

2 log 2π +
(
D

2 log 2π + log 1
V

) Mn∑
j=1

qn(θn,j = 0)− DMn

2 log 2π (5.71)
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Now substitute (5.70) to (5.66), we have

log
∫
p̂n|n−1(Xn) exp Eqn(θn) log p(Yn|θn, Xn)dXn

= log
∫
p̂n|n−1(Xn) exp

(
K∑

k=1
logN (Y k

n;HXn,k, R
k
n) + Cx

)
dXn

= log
(

expCx

∫ K∏
i=1

p̂n|n−1(Xn,i)
K∏

k=1
N (Y k

n;HXn,k, R
k
n)dXn

)

=Cx +
K∑

k=1
log

∫
p̂n|n−1(Xn,k)N (Y k

n;HXn,k, R
k
n)dXn,k, (5.72)

where the second equality in (5.72) is obtained by using the fact that we always
have p̂n|n−1(Xn) = ∏K

k=1 p̂n|n−1(Xn,k) for our assumed mean-field family. Note that
with a Gaussian p̂n|n−1(Xn,k) in (5.28), the marginal likelihood in (5.72) can be easily
computed in a Gaussian form, i.e.∫

p̂n|n−1(Xn,k)N
(
Y k

n;HXn,k, R
k
n

)
dXn,k = N

(
Y k

n;Hµk∗
n|n−1, HΣk∗

n|n−1H
⊤ +Rk

n

)
= exp

[
−1

2T
k
n

⊤
Sk

n

−1
T k

n −
D

2 log 2π − 1
2 log detSk

n

]
, (5.73)

where µk∗
n|n−1,Σk∗

n|n−1 are given in (5.28). T k
n , S

k
n are defined in (5.29) as by-products of

Kalman filter updates. Now substitute (5.73), and (5.71) to the (5.72), we have

Cx +
K∑

k=1
log

∫
p̂n|n−1(Xn,k)N (Y k

n;HXn,k, R
k
n)dXn,k

=
K∑

k=1

[
−1

2T
k
n

⊤
Sk

n

−1
T k

n −
D

2 log 2π − 1
2 log detSk

n

]
+ 1

2

K∑
k=1

(
log detRk

n + Y k
n

⊤
Rk

n

−1
Y k

n

)

+ DK

2 log 2π − 1
2

Mn∑
j=1

K∑
k=1

qn(θn,j = k)
(
Y ⊤

n,jR
−1
k Yn,j + log detRk

)

+
(
D

2 log 2π + log 1
V

) Mn∑
j=1

qn(θn,j = 0)− DMn

2 log 2π

=
(
D

2 log 2π + log 1
V

) Mn∑
j=1

qn(θn,j = 0)− 1
2

Mn∑
j=1

K∑
k=1

qn(θn,j = k)
(
Y ⊤

n,jR
−1
k Yn,j + log detRk

)

+ 1
2

K∑
k=1

(
Y k

n

⊤
Rk

n

−1
Y k

n − T k
n

⊤
Sk

n

−1
T k

n + log detRk
n

detSk
n

)
− DMn

2 log 2π, (5.74)
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where (5.74) gives the final result of the first line of the ELBO in (5.62), i.e. equation
(5.66) that computes Eqn(θn)qn(Xn) log p̂n|n−1(Xn)p(Yn|θn,Xn)

qn(Xn) , in which q(Xn) is the latest
updated variational distribution.

In this way, the complete ELBO in (5.62) is derived with final result given in (5.37),
where the first line of equation (5.62) is given in (5.74), the second line of equation
(5.62) corresponds to the solution in (5.63), and the last line of equation (5.62) is
calculated in (5.38).



Chapter 6

Variational Tracking and
Redetection for Closely-spaced
Objects in Heavy Clutter

The widely-used NHPP measurement model presented in Section 5.2 allows an object
to generate multiple measurements over time. However, it can be difficult to efficiently
and reliably track multiple objects under this NHPP model in scenarios with a high
density of closely-spaced objects and heavy clutter. While the VB-AbNHPP tracker
proposed in the previous chapter provides competitive tracking performance with
significant efficiency, extremely challenging tracking scenarios may still lead to track
loss. Consequently, this chapter proposes a novel variational localisation strategy,
which enables quick rediscovery of missed targets from a large surveillance area under
extremely heavy clutter. This strategy is integrated into the standard VB-AbNHPP
tracker (Algorithm 10 from Section 5.5), resulting in a robust VB-AbNHPP tracker that
can automatically detect and recover from track loss. A more comprehensive literature
review on existing multi-object trackers and comparisons with our robust VB-AbNHPP
tracker will be conducted. The robust VB-AbNHPP tracker demonstrates significantly
better tracking performance than existing trackers in challenging simulated tracking
scenes, in terms of both accuracy and efficiency.

This chapter serves as an extension of the previous chapter and is closely related to
it. We emphasise that the notation and definitions used in this chapter are consistent
with those used in the previous chapter. This chapter includes results that are also
part of [153], which is currently under review.
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6.1 Introduction

In real-world tracking applications, scenarios are typically complicated and diverse, often
presenting challenging situations such as high clutter density, unknown measurement
rates, a large number of closely-spaced targets, and occlusion. When tracking targets
in such adverse conditions, existing trackers may experience difficulties maintaining a
high level of accuracy and efficiency simultaneously, ranging from classical methods
such as the joint probabilistic data association (JPDA) filter and multiple hypothesis
tracker (MHT) [4], to the most recent techniques including random finite set (RFS)
trackers [154, 155] and message passing approaches [149, 156–159].

One major bottleneck is the rapidly growing computational complexity of the data
association with the number of targets and measurements. The non-homogeneous
Poisson process (NHPP) measurement model [144], which provides an exact association-
free measurement likelihood, has recently drawn much attention. The original NHPP
tracker [144], however, suffers from the ‘curse of dimensionality’ due to its particle filter
implementation. The same NHPP model was later employed in a JPDA framework [147]
to simplify marginal association probabilities; however, it used crude approximations
that severely impaired the tracking accuracy (see detailed discussions in Section
5.1). Subsequently, an association-based NHPP (AbNHPP) measurement model was
presented in [146, 143], which reintroduces associations into the NHPP model to enable
an efficient parallel sampling or a tractable structure. A SMCMC implementation
was designed in [146], and for linear Gaussian models, a fast Rao-Blackwellised online
Gibbs scheme (here referred to as the G-AbNHPP tracker) was developed in [50] with
an enhanced efficiency compared to [146]. Theoretically, these SMCMC methods can
converge to optimal Bayesian filters with a large enough sample size, while in practice
it can be computationally intensive when target and measurement number are larger.
Therefore, we proposed a high-performance AbNHPP tracker based on an efficient
variational inference implementation, presented in the previous chapter and in [143].
The devised VB-AbNHPP tracker is verified to achieve comparable tracking accuracy
with G-AbNHPP tracker [146] while enjoys a much faster speed.

However, in hostile environments where clutter number in a single time step can be
hundreds of times greater than the target’s measurements number (see e.g. Fig. 6.1
on page 185 and Fig. 6.8(c) on page 208), all the above-mentioned NHPP/AbNHPP
trackers are either computationally impractical [146, 50, 144] or struggle to main-
tain the tracking accuracy [144, 147, 143]. Therefore, this chapter proposes a novel
variational localisation strategy that allows a fast redetection of missed targets from
large surveillance area. Embedded with this redetection technique, our upgraded
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VB-AbNHPP tracker can automatically detect and recover from the track loss thus
providing a robust tracking performance even in extreme cases of heavy clutter with
parallelisable implementation and high efficiency.

6.1.1 Related work

The RFS-based trackers, including the Probabilistic Hypothesis Density (PHD) [160]
and the Poisson Multiple Bernoulli Mixture (PMBM) filter [154], are amongst the
most recent trackers, which provide a compact solution for joint detection and tracking.
However, these RFS-based methods often require heuristics and approximations to
be feasible in real-world tracking tasks. For instance, the PHD filter can avoid the
data association update step, yet it has no closed form solutions and relies on an
approximated Gaussian mixture implementation for practical use. Another example is
the PMBM filters, which have shown superiority over all other RFS-based trackers [154].
Notwithstanding, all the existing PMBM filters inherit the heuristic pruning, gating and
hypothesis management of the MHT framework to limit the exponential increase in the
global hypotheses number [154, 155]. Additionally, the most popular implementation in
[154] involves further approximation errors: first, it uses the k-best Murty’s algorithm
to truncate the number of global hypotheses; a pre-processing measurement clustering
step is employed for cases that targets generate multiple measurements, e.g. under
the NHPP measurement model. Although a sampling-based PMBM filter [155] was
devised to reduce the measurement clustering error, the designed MCMC methods are
not rigorous and can be computationally intensive. On top of that, it only keeps a
truncated subset of data associations and may experience a sharp decline in tracking
accuracy under the high data association uncertainty with a large number of targets
and clutter.

Alternatively, approximate inference methods [12], such as variational inference
[161, 162, 143] and (loopy) belief propagation [148, 149, 156] have been actively
investigated due to their promising tracking accuracy and computational efficiency. For
example, the belief propagation was used to design a fast data association framework
that can maintain a closed-form belief update under a point target measurement
model [149]. However, it requires a particle filter implementation when dealing with
the tracking problem under the NHPP measurement model [156]; consequently, it
loses its computational advantage and proves to be extremely slow in challenging
scenes such as in [50] with massive measurement data and heavy clutter. Meanwhile,
the cycles in the constructed factor graph raise concerns regarding the convergence
and the order of message computation. In contrast, coordinate ascent variational
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inference (CAVI) [23, 12], also known as mean field variational inference, is another
popular approximate inference method whose convergence can be guaranteed and
easily monitored. Compared to MCMC sampling methods, CAVI can typically achieve
a comparable performance but with a much more efficient implementation. Several
trackers have employed CAVI under a point target measurement model, e.g. [161, 162],
whereas the convergence is no longer guaranteed since these trackers have to implement
loopy belief propagation to approximate a certain step of variational update. In the
previous chapter, we have showed that the original CAVI is sufficient to yield the
tractable update without introducing any other approximate inference scheme, for
tracking a fixed number object under the NHPP measurement model. Hence, our
implementation of CAVI is in the most efficient manner where the convergence is
guaranteed and can be easily monitored.

Despite track loss happens frequently in existing multi-object trackers, few literature
investigated a solution for retrieving the lost targets in fixed number target tracking.
Several primitive track management strategies, including the M/N logic-based method
and the sequential probability ratio test (SPRT) [4], have been proposed for track
initiation and termination, e.g. in JPDA and MHT. These initiation methods may
be used to retrieve lost targets if considering relocating lost targets as detecting
a new target birth. More recently, birth processes are employed in many trackers
[154, 155, 149, 156, 162] to initiate the track and potentially redetect the missed targets.
A major issue that limits their ability to retrieve missed targets under heavy clutter
is the low efficiency, since a large number of measurements would lead to massive
potential targets, which then require considerable computational efforts to evaluate
their existence probability. Although the potential target number can be reduced by
pre-processing the measurements (e.g. clustering [156, 154]), when handling target
birth under heavy clutter such as Fig. 6.1 and Fig. 6.8(c), to our knowledge, the
trackers in [156, 154, 155] are still slow with too many potential targets and fail to
reflect the true targets’ positions.

6.1.2 Contributions

The first contribution of this chapter is a novel variational object localisation strategy
that can efficiently find the potential targets’ locations in a large survey area under
heavy clutter such as in Fig. 6.1 on page 185 and Fig. 6.8(c) on page 208. With a known
target rate and measurement covariance, our strategy can localise the target without
an informative positional prior, by using merely a single time step measurements. In
particular, this variational localisation strategy proceeds by independently running
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multiple CAVIs, each featuring a specifically designed initialiasation that can guide the
CAVI to find the most probable target location in a selected small region within the
surveillance area. The efficiency of this strategy is then supported by our parallelisable
CAVIs and/or a series of wisely selected local regions. Most importantly, this chapter
utilises the CAVI in an innovative manner in our localisation strategy. To our knowledge,
our localisation strategy is the first attempt to ‘control’ the CAVI to converge to the
desired local optimum, and ultimately to employ this concept to find the global
optimum of the considered problem. In contrast, most existing applications (e.g. [51–
53, 161, 162]) simply perform the CAVI with a fixed number of iterations and directly
adopt the obtained local optimum, whereas this regular routine of CAVI cannot tackle
challenging localisation problems in this chapter, since the target’s posterior exhibits
considerably multi-modal behaviour due to the heavy clutter.

Another major contribution is a VB-AbNHPP tracker with relocation strategy
(VB-AbNHPP-RELO). Specifically, we propose a novel track loss detection procedure;
once the track loss is detected, the proposed variational localisation strategy can
be used to relocate the targets. In this way, our VB-AbNHPP-RELO tracker can
robustly track a known number of closely-spaced targets under extremely heavy clutter,
allowing the missed targets to be detected and relocated in time automatically and
efficiently. Moreover, it enjoys superior tracking accuracy owing to our carefully
designed approximate inference paradigm. Compared to other trackers that based on
the sampling or maintaining multiple hypotheses (e.g. [50, 156, 154]), our tracker is
much faster due to its single Gaussian vector representation of the obtained object state
posterior and the efficient CAVI inference implementation; it can be further accelerated
due to many parallelisable computational features in the algorithm. Results verify that
our proposed VB-AbNHPP-RELO has a significantly higher tracking accuracy with a
faster speed over other existing trackers in cases of a large number of closely-spaced
targets and heavy clutter.

6.1.3 Layout

The remainder of this chapter is organised as follows. In Section 6.2, we propose and
demonstrate a novel variational localisation strategy, which can detect a single target
detection in a large surveillance area under heavy clutter. Section 6.3 extends this
technique to localise multiple missed targets, based on which and a proposed track loss
detection strategy, we develop the VB-AbNHPP-RELO that can timely recover from
the track loss. Section 6.4 verifies the performance of both VB-AbNHPP-RELO (with
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a known rate) and VB-AbNHPP with rate estimation using simulated data. Finally,
Section 6.5 concludes the chapter.

6.2 Variational object localisation under heavy clut-
ter with non-informative prior

First and foremost, we emphasise once again that the notation and definitions used
in this chapter are the same as those in the previous chapter. Specifically, the target
state Xn, association θn, and measurements Yn, as well as their underlying modelling
assumptions and parameters, are all defined in Section 5.2.

This section presents a novel technique for efficiently locating a target amidst a
high level of clutter using the variational Bayes framework. Different from tracking
scenarios where the previous time step’s tracking result can provide an informative
prior of the target’s position, the localisation strategy discussed here does not require
such a strong informative prior. As a result, this technique can be useful for relocating
targets once they lose track, or for initialising a tracking algorithm where the target
positions are hardly known. Moreover, it has the potential to be developed into a
strategy for estimating the number of targets. This section places an emphasis on
clarifying the technique’s rationale and thus only considers the localisation of a single
object. We will extend the relocation technique to handle multiple missed objects in
Section 6.3, and integrate it into the complete VB-AbNHPP tracking algorithm.

We assume that the target to be localised follows the NHPP model, and that both
the Poisson rates Λ and the measurement covariance are known to us (e.g. trackers
have been calibrated and these parameter have been estimated in advance using the
proposed method in Section 5.4 of Chapter 5). Our strategy is designed for challenging
scenarios where the clutter number in the survey area can be hundreds of times greater
than the target’s measurement number. We aim to efficiently locate the target only
using measurements received at a single time step, and the target can be anywhere in
the survey area. Currently, our strategy can handle target Poisson rates as low as 3.
In more challenging scenarios where the target Poisson rate is lower, the localisation
may be achieved by using measurements from multiple time steps, and this case will
be discussed in future.
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Fig. 6.1 Measurements received at the time step n; ground-truth target position is
(0, 0); purple ellipse is the 95% uncertainty ellipse of the target position Gaussian prior;
four red dots are target measurements, and the blue dots are clutters.

6.2.1 Problem setting

To clarify the main concept of the proposed procedure, let us consider a typical task
of locating a single target under heavy clutter at time step n. This procedure can be
performed at the initialisation (n = 0) or at any time step (n ̸= 0) when the track is
lost. In this example, the target number K = 1, the target state Xn = Xn,1, and the
received measurements Yn are shown in Fig. 6.1.

We assume that only position measurements of the target state Xn,1 can be directly
observed, with the measurement matrix H and measurement noise covariance matrix
Rn,1 = 100I2, where I2 is a 2D identity matrix. The target measurement number is
assumed to be Poisson distributed with a Poisson rate of Λ1 = 4, and these target-
oriented measurements are buried in the uniformly distributed clutter with a heavy
clutter density of Λ0/V = 10−4. The exact target position, i.e. HXn,1, is (0, 0).
However, we have no other information regarding this position except for a rather flat
Gaussian prior p(Xn,1) and the 95% uncertainty ellipse of position is shown in Fig. 6.1.
We denote this ellipse as the survey area, and we will only search for the target within
this area. Note that, strictly speaking, p(Xn,1) should be computed by using the given
initial prior p(X0) and transition p(Xn|Xn−1). In this section, we directly assign a
highly uncertain prior to p(Xn,1), which is specifically designed for missed targets.

In such scenarios, locating a target can be be difficult due to the dense clutter, which
may lead to a multimodal posterior and further confuse the algorithm from finding the
true target location. Specifically, when clutter measurements are occasionally densely
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displayed in some small regions, these regions become deceptive candidates for the
target’s true location, leading to several competitive modes in the posterior of the
target’s position. Taking Fig. 6.1 as an example, it may be difficult to determine
whether the target is located at (0, 0) or (10, 300), as both of these two locations have
many measurements around them.

6.2.2 Variational localisation strategy

Now we formulate the target localisation task within the variational inference framework,
where we aim to approximate the exact posterior p(Xn,1, θn|Yn,Λ) with a variational
distribution q(Xn,1)q(θn). Here, the CAVI features similar updates as in (5.29) on
page 154 and (5.46) on page 162: the update for q(Xn,1) is the same as (5.29) except that
µk∗

n|n−1 and Σk∗
n|n−1 are replaced by the mean and covariance of the prior p(Xn,1), and the

update for q(θn) is the same as (5.46). The standard CAVI with a single initialisation,
when applied to the considered task, is prone to getting trapped in local optima
and the converged variational distribution only accommodates a single mode of the
posterior distribution. To overcome it, the main concept of our localisation technique
is to identify multiple competitive modes in the exact posterior p(Xn,1, θn|Yn,Λ) by
implementing multiple runs of the CAVI in parallel with different initialisations. We
then select the most likely mode by evaluating the ELBO calculated for each mode.

Specifically, each run of CAVI starts from initialising the association distribution
q(θn) with the q(0)(θn),

q(0)(θn) =
Mn∏
j=1

q(0)(θn,j)

q(0)(θn,j) ∝
Λ0

V
δ[θn,j = 0] + Λ1l

0
1δ[θn,j = 1],

l01 =N (Yn,j;ms, C +Rn,1),

(6.1)

where N is the total number of initialisations, and ms (s = 1, 2, ...., N) and C are
manually selected for each initialisation and have the same dimensions as Yn,j and Rn,1,
respectively.

Such an initial distribution mimics the form of the initialisation in (5.48), except
that Hµk∗

n|n−1 and HΣk∗
n|n−1H

⊤ (i.e. the mean and the covariance of the predictive prior
p̂n|n−1(Xn,k)) are replaced by ms and C, respectively. In a nutshell, the localisation
procedure for the considered task is three-step:
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Step 1: Choose a C, and assign a series of values for ms (s = 1, 2, ..., N) such that the
union of all the 95% error ellipses of N (ms, C) can cover the 95% error ellipse of
the prior p(Xn,1). See Fig. 6.2 on page 188 for example.

Step 2: Run CAVI with the initialisation in (6.1) for each pair of ms and C, then
record each q∗(Xn,1) and its final ELBO. The CAVIs can be run in parallel.

Step 3: Find q∗(Xn,1) with the highest ELBO, which is the most likely one to capture
the true target’s position.

In the following, we present two rationales that this localisation method is inherently
based upon.

Remark 1. For each s, the CAVI is expected to find the most probable target location
(the location with the greatest density of measurements) within the 95% confidence
ellipse of N (ms, C), with the initialisation in (6.1) and a properly chosen C. See
discussions below and in Section 6.2.3.

Remark 2. The ELBO, which equals the negative KL divergence up to an additive
constant, reflects the quality of the found variational distribution q∗(Xn,1)q∗(θn). The
higher the ELBO, the better the variational distribution we have found.

Under these two remarks of the proposed localisation strategy, each CAVI for each
initialisation will explore a specific local area (e.g. the green circle in Fig. 6.2) to
find the ‘best’ target position in the local area. As the union of these local areas
encompasses the survey area, it is anticipated that the target can be successfully
localised by a converged variational distribution q∗(Xn,1)q∗(θn) with the highest ELBO.

Remark 2 is well studied (e.g. in [23, 12]) while Remark 1 is only verified empirically
for the considered localisation case in heavy clutter. Particularly, we observe that,
typically, Remark 1 holds true only for a small enough C. If C is too large, the CAVI
either converges to q∗(Xn,1) that covers the dense measurements nearest to ms (i.e. the
centre of the local area), or traps in the local optimum with q∗(Xn,1) = p(Xn,1). Note
that however, we still would like C to be as large as possible in practical implementation,
since this leads to fewer initialisations and hence less computational power required to
explore the entire survey area. More details about the empirical properties we observed
about the Remark 1, and an informal justification of their rationales is provided in
Appendix 6.A.
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Fig. 6.2 An example of all 95% error ellipses (green/black circles) of N (ms, C) used
for the initialisation in equation (6.1) (total number N = 117). The effects of six of
these initialisations (black circles) are further demonstrated in Fig. 6.3.

6.2.3 Demonstration

We now demonstrate the effectiveness of the proposed localisation strategy with an
example task. The initialisation setting is shown in Fig. 6.2 where each green circle
denotes one initialisation, and all initialisations have the same constant C = 352I2.
To show how the algorithm works, we further analyse six initialisations among them,
highlighted in black circles in Fig. 6.2, and present the results of the CAVI with
these initialisations in Fig. 6.3. In each subfigure in Fig. 6.3, the green circle denotes
the initialisation N (ms, C); black/grey circles are the target positional variational
distribution q(HXn,1) evaluated at all iterations, and the color of the circles gradually
darkens from grey to black along with the sequence of iterations. Specifically, the
lightest grey circle denotes the first iteration’s variational distribution and the black
circle denotes the converged variational distribution. Note that in Fig. 6.3, we only
present the position information q(HXn,1) by extracting the mean and covariance
of the position from q(Xn,1). All circles/ellipses in Fig. 6.3 are plotted with a 95%
confidence interval. For each subfigure, the ELBO is computed (with an additive
constant) by using its converged variational distribution (shown as the black circle).
Likewise, we independently carry out the CAVI for all initialisations in Fig. 6.2 until
convergence, and compute an ELBO for each initialisation. It turns out that the highest
ELBO is 5.671, and the corresponding iterative update results and the initialisation
are shown in Fig. 6.3(e). It can be seen from Fig. 6.3(e) that the converged variational
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distribution successfully captures the exact target position, which demonstrates that
our localisation strategy is effective for this task.

This demonstration example can also facilitate verifying two remarks and the
efficacy of the initialisation in (6.1). Let us take a closer look at Fig. 6.3. It can be
noticed that, whether or not it converges to the true position, the converged variational
distribution q∗(HXn,1) is able to capture the most probable location with the greatest
density of measurements in the area covered by the green circle, which verifies Remark
1 in Section 6.2.2. In particular, subfigures (a-b) and (e) all locate the target around
its exact position (0, 0), and correspondingly achieve the highest three ELBO values, in
which case it provides a triple guarantee for the success of our localisation strategy. A
noteworthy fact is that the aforementioned deceptive potential target location (10, 300)
is found by the initialisation in the subfigure (c) with a relatively high ELBO of 4.31,
verifying that the found variational distribution is a competitive mode in the exact
posterior. Still, this ELBO is not as high as the ELBO achieved by those variational
distributions that capture the exact target location with an ELBO of 5.67. This
demonstrates that the ELBO is a reliable metric that can tell the slight difference
between multiple competitive modes in the exact posterior, which verifies Remark 2.

Finally, it should be noted that the selection of C in (6.1) is important to the
proposed localisation strategy and may need to be tuned for each realisation of the
parameter set Λ. Recall that for each s = 1, 2, ..., N , if C is too large, the final q∗(Xn,1)
would either concentrate around the measurement nearest to ms, or be trapped in
the local optimum with q∗(Xn,1) = p(Xn,1). For example, the subfigures (b) and (c)
in Fig. 6.4 employ the same ms as in Fig. 6.3(d) and Fig. 6.3(f), respectively, while
both having a larger C. It can be seen that both cases in Fig. 6.4 fail to find the
most probable target location in the green ellipse. Specifically, even though the green
ellipse in Fig. 6.4(b) covers the exact target location, the final q∗(Xn,1) still finds
the local optimum that is closer to ms. As to the q∗(Xn,1) in Fig. 6.4(c), it fails to
capture the local optimum in Fig. 6.3(f), and instead converges to the prior p(Xn,1).
In contrast, choosing a smaller C leads to a higher computational burden as it requires
more initialisations to cover the high confidence region of the prior, and thus more runs
of CAVI to explore the entire survey area. Meanwhile, it may be inefficient as each
CAVI will only be able to explore a smaller local region. For example, the initialisation
in Fig. 6.4(a) has the same ms as in Fig. 6.3(a) but with a lower C. The final q∗(Xn,1)
captures the most probable target location in the small green ellipse. However, it misses
the exact location which would have been covered by a larger C and then captured by
the CAVI as in Fig. 6.3(a).
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Fig. 6.3 The results of CAVI with six initialisations in Fig. 6.2. The green circle depicts
the N (ms, C) in (6.1). The grey/black circles represent the iterative updated q(HX1),
whose color gradually darkens with the sequence of iterative updates in CAVI. All
circles/ellipses are with 95% confidence interval.

Fig. 6.4 The results of CAVI with three initialisations that employ different ms and
different C.
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6.2.4 Acceleration of the localisation strategy

The computational complexity of the presented localisation strategy is primarily
determined by the number of runs of CAVI, which is equivalent to the number of
initialisations N . In addition to parallelising CAVI runs, enhancing the efficiency of
the localisation procedure can be achieved by judiciously reducing N . This reduction
can be significant by leveraging our knowledge of the target rate Λ1 (4 in the current
problem setting). Recall that the concept of localisation strategy may be understood
by first dividing the entire survey area into N local regions, then employing CAVI to
explore each local region. However, some of these local regions are not worth exploring
if they include only a few measurements, which result in a total count too low to
adhere to our Poisson distribution assumption with rate Λ1. Hence we can ignore such
initialisations to accelerate the algorithm.

For example, the regions that include 0 measurement are obviously not worth
exploring; and even if we did explore them, without any measurement, there wouldn’t
be any reasonable localisation result. In particular, we can perform the CAVI only for
the local regions that include at least M init measurements. The choice of M init will be
discussed in Appendix 6.B.2 for our full tracking algorithm. Subsequently, the number
of eligible initialisations (or green circles) in Fig. 6.2 is N = 117 if M init = 0. This
number reduces to 104, 70 and 36 if M init is set to 1, 2, and 3 respectively. For this
specific task, we can still successfully localise the target even if we set M init = 6, which
only requires 6 initialisations in total.

6.3 VB-AbNHPP tracker with missed objects relo-
cation

We now extend the localisation strategy for a single object in Section 6.2.2 to enable
the relocation of multiple lost track objects. This strategy will be employed in the
developed VB-AbNHPP tracker, and the procedure of the full VB-AbNHPP tracker
with relocation will be given in subsection 6.3.3. Recall that the standard VB-AbNHPP
tracker aims to track K targets with labels 1, 2, ..., K. Now define Ln as the set of
labels for targets whose tracks have been lost after a standard tracking procedure,
followed by a track loss detection step in Section 6.3.1 at time step n (detailed steps to
obtain Ln will be described in Algorithm 12). The objective of the proposed relocation
strategy at time step n is to relocate these targets before we implement the next
tracking procedure at n+ 1.
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Specifically, to relocate multiple objects in Ln, we first assign a non-informative
Gaussian prior p̃n(Xn,h), h ∈ Ln to each of them. As in Section 6.2, we assume that
the Poisson rate Λ is known or has been estimated. Then the target distribution for
the relocation task at time step n is

p̃n(Xn, θn|Yn) ∝
∏

h∈Ln

p̃n(Xn,h)p̂n|n−1(Xn,k ̸∈Ln)p(Yn|θn, Xn)p(θn|Mn,Λ), (6.2)

where Xn,k ̸∈Ln denotes the state of all targets that are not in Ln, and their predictive
prior p̂n|n−1(Xn,k ̸∈Ln) has been defined in (5.22) and computed in the standard tracker
via (5.28). This target distribution p̃n(Xn, θn|Yn) is defined similarly to p̂n(Xn, θn|Yn),
where p̂n is defined in (5.42), except that the predictive priors for missed targets’ states
are replaced by a non-informative prior p̃n(Xn,h), h ∈ Ln.

Subsequently, the relocation task can be formulated within the variational Bayes
framework as follows: We aim to minimise the KL divergence between the variational
distribution qn(θn)qn(Xn) and the target distribution p̃n(Xn, θn|Yn) in (6.2). Different
from the tracking tasks in Section 5.4 where qn(Xn) are updated independently for each
target, here for the efficiency of the relocation task, we are only interested in updating
the qn(Xn,h) for missed targets h ∈ Ln. Moreover, we will localise each target in Ln one
at a time. This is to avoid the exponentially increasing number of (multi-dimensional)
local regions that are required to cover the entire multi-dimensional survey area if
multiple objects are localised at the same time. For example, if for each single target,
100 local regions are required to overlap the single-dimensional survey area, then it
only requires 100× 3 initialisations of CAVI in total to locate three targets one at a
time; however, it needs 1003 initialisations (each in a three-dimensional space) to cover
the whole survey area in three-dimensional space if three targets are localised together.

It should be noted that when we localise the target h (h ∈ Ln), other targets
(including other targets in Ln and all targets that are tracked properly) have fixed
variational distributions q∗

n(Xn,h−), where Xn,h− denotes all the target states in Xn

except Xn,h. This converged variational distribution q∗
n(Xn) is first obtained from

the standard tracking procedure at time step n, and should be updated timely as
q∗new

n (Xn,h)q∗
n(Xn,h−) once a lost track target h in Ln has been successfully relocated

by a converged variational distribution q∗new
n (Xn,h). Subsequently, for each h ∈ Ln, the

CAVI is implemented to maximise the following ELBO by iteratively updating qn(θn)
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and qn(Xn,h),

Fn,h(qn(θn), qn(Xn,h))

=Eqn(θn)qn(Xn,h)q∗
n(Xn,h−) log p(Yn|θn, Xn)p(θn|Mn,Λ)p̂n|n−1(Xn,k ̸∈Ln)∏i∈Ln

p̃n(Xn,i)
qn(θn)qn(Xn,h)q∗

n(Xn,h−)
=−KL(qn(θn)||p(θn|Mn,Λ))−KL(qn(Xn,h)||p̃n(Xn,h))

+ Eqn(θn)qn(Xn,h)q∗
n(Xn,h−) log p(Yn|θn, Xn) + c, (6.3)

where c is a constant that does not depend on qn(θn) or qn(Xn,h). The specific form of
(6.3) is derived in Appendix 6.C. This optimisation is still equivalent to minimising
the KL(qn(θn)qn(Xn)||p̃n(Xn, θn|Yn)), only now qn(Xn) is set as qn(Xn,h)q∗

n(Xn,h−) and
q∗

n(Xn,h−) is fixed when localising the target h.
By fixing other targets’ variational distributions, the variational localisation of the

target h naturally takes into account the impact of other successfully localised targets.
Specifically, the measurements that are covered by the fixed variational distributions
q∗

n(Xn,h−) naturally have a considerable probability to associate with the successfully
tracked targets in Xn,h−. In order to achieve a high ELBO, typically qn(Xh) tends
to encompass some dense measurements that are away from other targets, instead
of relocating the target h around other properly tracked targets to compete for the
association probability of the measurements nearby. Therefore, multiple objects can be
relocated to different potential locations, rather than occupying the same place with
limited measurements around them.

The optimisation of the ELBO Fn,h in (6.3) requires similar variational updates as
in Section 6.2.2. The update for qn(Xn,h) is the same as in (5.29) except replacing the
µh∗

n|n−1 and Σh∗
n|n−1 with the mean and covariance in p̃n(Xn,h). Recall that q∗

n(Xn,k) =
N (µk∗

n|n,Σk∗
n|n) and qn(Xn,h) = N (µh

n|n,Σh
n|n), the update of qn(θn) is also similar to

(5.46):

qn(θn) =
Mn∏
j=1

qn(θn,j),

qn(θn,j) ∝
Λ0

V
δ[θn,j = 0] +

K∑
k=1

Λklkδ[θn,j = k],

lk =



N (Yn,j ;Hµk∗
n|n,Rk)

exp(0.5Tr(R−1
k

HΣk∗
n|nH⊤)) , k ̸= h

N (Yn,j ;Hµh
n|n,Rh)

exp(0.5Tr(R−1
h

HΣh
n|nH⊤)) , k = h

(6.4)
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Moreover, to relocate the lost track target h under heavy clutter, it is essential
to implement the same variational localisation strategy with multiple initialisations
as presented in Section 6.2.2. That is, we need to first determine an initialisation
covariance C, then assign a series values of ms (s = 1, 2, ..., N) such that the union of
high (e.g. 95%) confidence ellipses of N (ms, C) can cover the high confidence region
of our prior p̃n(Xn,h). Then, multiple CAVIs can be carried out in parallel to search
for the most likely target position in a local region N (ms, C) for each initialisation:

q(0)
n (θn) =

M∏
j=1

q(0)
n (θn,j)

q(0)
n (θn,j) ∝

Λ0

V
δ[θn,j = 0] +

K∑
k=1

Λkl
0
kδ[θn,j = k], (6.5)

l0k =

N (Yn,j;Hµk∗
n|n−1, HΣk∗

n|n−1H
⊤ +Rk), k ̸= h

N (Yn,j;ms, C +Rh), k = h

where s = 1, 2, ...., N ; µk∗
n|n−1 and Σk∗

n|n−1 are the mean and covariance of p̂n(Xn,k),
which have been computed by (5.28) in the standard tracking procedure. Similar to the
initialisation (6.1) in Section 6.2.2, (6.5) mimics the form of (5.48) with a modification
to the term l0h. As discussed in Section 6.2.4, not all of these initialisations are necessary
to implement. We will only consider the initiasations in which the 95% confidence
ellipses of N (ms, C) include at least M init

k measurements, where M init
k is an eligible

initialisation threshold. The choice of M init
k will be discussed in Appendix 6.B.2.

Finally, the relocation strategy of lost track targets for VB-AbNHPP tracker can
be summarised in Algorithm 11. In brief, for each missed target, it first 1) determines
the uninformative Gaussian prior and settings for N initialisations; then 2) carries
out multiple CAVI with all eligible initialisations as discussed above, and finds the
converged variational distribution with the highest ELBO; 3) if the found variational
distribution is convincing enough, use it as the obtained posterior of this missed target;
otherwise give up the relocation for this target.

A final remark on our relocation strategy is that Algorithm 11 does not always
relocate all targets in Ln at every time step n. Rather, it only relocates the lost
track target when it is confident about its position. This is because even though the
obtained variational distribution that achieves the highest ELBO is expected to find the
most likely target’s location, it may still not capture the true position. If we relocate
a target to the wrong position, the algorithm may take many time steps to realise
this relocation is wrong and the target may be lost for too long, which may further
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Algorithm 11: Relocation strategy at time step n

1 Require: Yn,Mn, I, ϵ, p̂n|n−1(Xn), q∗
n(Xn) from the standard tracker, the exact

or estimated Λ, missed target set Ln (obtained in Algorithm 12 when this
algorithm is invoked), relocation initialisation thresholds M reloc

h∈Ln
, and eligible

initialisation thresholds M init
h∈Ln

.
2 Output: Successfully tracked/relocated set Kn, refined q∗

n(Xn) and q∗
n(θn).

3 Initialise Kn = {k ∈ {1, 2, ..., K} : k /∈ Ln}.
4 foreach h ∈ Ln do
5 Assign an uninformative Gaussian prior p̃n(Xn,h).
6 Determine ms(s = 1, 2, ..., N) and C for initialisations (6.5) such that the

union of 95% confidence ellipse of N (ms, C) covers p̃n(Xn,h).
7 for s = 1, 2, ..., N do
8 if there are less than M init

h measurements in the 95% confidence ellipse
of N (ms, C) then

9 Set F s
n,h = −∞.

10 continue
11 end
12 Evaluated q(0)

n (θn) via (6.5), and initialise qn(θn) = q(0)
n (θn).

13 for i = 1, 2, ..., I do
14 Evaluate Rh

n, Y
h
n according to (5.26)(5.27).

15 Update qn(Xn,h) via (5.29) where µk∗
n|n−1,Σk∗

n|n−1 are replaced by the
mean and covariance of p̃n(Xn,h).

16 Evaluate the ELBO F (i)
n,h according to (6.3).

17 if F (i)
n,h − F (i−1)

n,h < ϵ ∧ i ≥ 2 then
18 break
19 end
20 Update qn(θn) according to (6.4).
21 end
22 Set F s

n,h = F (i)
n,h, and qs

n(Xn,h) = qn(Xn,h).
23 end
24 Find the best index w = arg maxs F s

n,h.
25 if ∑Mn

j=0 q
w
n (θn,j = h) ≥M reloc

h then
26 Update q∗

n(Xn)← qw
n (Xn,h)q∗

n(Xn,h−), i.e. update µh∗
n|n, Σh∗

n|n as the mean
and covariance of qw

n (Xn,h).
27 Update Kn ← Kn

⋃{h}.
28 else
29 Update q∗

n(Xn)← p̃n(Xn,h)q∗
n(Xn,h−), i.e. update µh∗

n|n, Σh∗
n|n as the mean

and covariance of p̃n(Xn,h).
30 end
31 end
32 Update q∗

n(θn) with the refined q∗
n(Xn), i.e. using (6.4) where µh

n|n,Σh
n|n are

replaced by µh∗
n|n,Σh∗

n|n.
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deteriorate the tracking performance. Therefore, Algorithm 11 will first determine
whether the obtained variational distribution is convincing enough by using an effective
relocation criterion. If this criterion is satisfied, the algorithm refines q∗

n(Xn) with the
obtained variational distribution; if not, the prior p̂(Xn,h) will be employed to update
the q∗

n(Xn). Such an effective relocation criterion, which has already been specified in
Algorithm 11, will be explained in Appendix 6.B.2.

In the following subsections, we will first describe the track loss detection strategy,
and then explain the rationale of the effective relocation criterion in Algorithm 11.
Finally, we will apply all these techniques to develop the full VB-AbNHPP-RELO
tracker in Section 6.3.3.

6.3.1 Track loss detection

The proposed relocation strategy (Algorithm 11) described above is only triggered
when a track loss is detected. To this end, the (estimated) number of measurements
produced by a target is used to monitor whether the target is tracked properly. The
exact number of measurements Mn,k generated at time step n by the target k can
be defined with the association θn, i.e. Mn,k = ∑Mn

j=0 I(θn,j = k). A convenient point
estimate of this target measurement number can be computed as a byproduct of the
VB-AbNHPP using the converged variational distribution q∗

n(θn), i.e.

M̂n,k = Eq∗
n(θn)Mn,k =

Mn∑
j=0

q∗
n(θn,j = k). (6.6)

If the algorithm fails to track the target k, the estimated target position may have
fallen in an area with no real measurements but only sporadic clutter; in this case,
M̂n,k is expected to be very small as there may be few measurements associated with
target k. Therefore, a criterion for detecting a track loss event is that M̂n,k is too low.

Specifically, we will record M̂t,k for each time step t and each target k, and if the
total (estimated) number of measurements generated during τk (τk ≥ 1) time steps
before the current time step n falls into a certain positive threshold M los

k , in other
words, if the following event E happens,

event E :
n∑

t=n−τk+1
M̂t,k ≤M los

k , (6.7)
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we conclude that the track of the target k has been lost. The details about the choice
of the parameters τk and M̂n,k, including an automatic parameter selection strategy,
are presented in Appendix 6.B.1.

6.3.2 Effective relocation criterion

Similar to the track lost detection in Section 6.3.1, the (estimated) number of mea-
surements produced by a relocated target is used to determine whether the obtained
variational distribution is convincing enough. Specifically, the estimated number of
measurements generated from the target h ∈ Ln based on the obtained variational
distribution qw

n (Xn,h, θn) is ∑Mn
j=0 q

w
n (θn,j = h). The effective relocation criterion in

Algorithm 11 is satisfied when this estimated measurement number is greater than the
relocation threshold M reloc

h , i.e.

Mn∑
j=0

qw
n (θn,j = h) ≥M reloc

h (6.8)

The reason is that a high estimated measurement number is more likely to have been
generated by the target itself, than by uniformly distributed clutter that happened to
cluster in a small area by chance. As a result, a high estimated measurement number
makes it more likely that the obtained variational distribution qw

n (Xn,h) has successfully
relocated the target h. The selection of the relocation threshold M reloc

h will be discussed
in Appendix 6.B.2.

6.3.3 Full VB-AbNHPP tracker with relocation Strategy

Finally, we are in a position to present the complete VB-AbNHPP tracker with
relocation (VB-AbNHPP-RELO) algorithm. For simplicity, we only present the
VB-AbNHPP-RELO tracker for tasks where the Poisson rate Λ and measurement
covariance Rk (k = 1, 2, ...K) are known or have been accurately estimated. This
allows our algorithm to robustly track closely-spaced targets under extremely heavy
clutter. In this setup, the track loss detection parameters τk,M

los
k , relocation threshold

M reloc
k , and eligible initialisation threshold M init

k (k = 1, 2, ..., K) can be easily and
automatically selected according to Appendix 6.B. These parameters, along with
initialisation covariance C and convergence monitoring parameters I, ϵ, can all be
determined before performing tracking tasks and are not required to be updated in
subsequent time steps. For convenience, all these parameters will not be listed as
inputs in our single time step VB-AbNHPP-RELO procedure summarised in Algorithm
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Algorithm 12: Tracking with relocation at time step n

1 Require: q∗
n−1(Xn−1), Yn,Mn, successfully tracked/relocated set Kn−1. If

τk ≥ 2, also require M̂t,k (k ∈ Kn−1 and t from n−τk+1 to n−1).
2 Output: q∗

n(Xn),Kn. If τk ≥ 2, also output M̂t,k for all k ∈ Kn and t from
n−τk+2 to n.

3 Run the standard tracker with known Λ, i.e. Algorithm 10 from Section 5.5, to
obtain p̂n|n−1(Xn), q∗

n(Xn), and q∗
n(θn).

4 Initialise Ln = {k ∈ {1, 2, ..., K} : k /∈ Kn−1}.
5 foreach k ∈ Kn−1 do
6 Evaluate M̂n,k according to (6.6).
7 if ∑n

t=n−τk+1 M̂t,k ≤M los
k then

8 Update Ln ← Ln
⋃{k}.

9 end
10 end
11 if Ln ̸= ∅ then
12 Run the relocation procedure (i.e. Algorithm 11) to obtain Kn and the

refined q∗
n(Xn) and q∗

n(θn).
13 foreach k ∈ Kn do
14 Update M̂n,k via (6.6) with the refined q∗

n(θn).
15 if k ∈ Ln ∧ τk ≥ 3 then
16 Set M̂t,k = Λk for t from n−τk+2 to n−1.
17 end
18 end
19 end

12. Note that in Algorithm 12, the standard VB-AbNHPP tracker with known Λ and
Rk is incorporated, which has been outlined in Algorithm 10 from Section 5.5. In a
nutshell, Algorithm 12 first 1) performs the standard VB-AbNHPP tracker for the
current time step, then 2) updates the missed target set Ln by track loss detection,
and finally 3) implements the relocation only for missed targets in Ln.

For targets relocated successfully at the current time step, their estimated measure-
ment numbers at previous time steps are in principle unavailable to us. However, the
track loss detection in (6.7) requires the estimated measurement number from previous
τk time steps. Thus, in order to ensure the track loss detection can be directly carried
out in the next time step, Algorithm 12 automatically sets the estimated measurement
number at previous time steps as target’s Poisson rates. This empirical setup allows
for the timely detection of track loss for any properly tracked target at any time step.

It is yet be discussed the choice of the uncertain Gaussian prior p̃n(Xn,h) for the
relocation of the missed target h ∈ Ln in Algorithm 12 and Algorithm 11. Typically,
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the mean of p̃n(Xn,h) should be set to the target h’s latest state estimate when it was
properly tracked (for at least 1 or 2 time steps). Moreover, it is practically efficient to
set a relatively small covariance of p̃n(Xn,h) for the target h whose track has just been
lost, e.g. for h ∈ Ln such that h /∈ Ln−1. For the target h that has been missed for a
longer time and failed to be captured within a small survey area, e.g. for h ∈ Ln

⋂Ln−1,
a large covariance of p̃n(Xn,h) should be set to allow for a more extensive search in a
larger survey area. Finally, it is beneficial to incorporate the prior information of the
sensor surveillance region in p̃n(Xn,h). For example, p̃n(Xn,h) should not have a high
probability density over areas not covered by the sensor surveillance region or where
the target is definitely not present.

6.4 Simulation

This section focuses on the evaluation of the proposed full VB-AbNHPP-RELO tracker
in Algorithm 12 on multi-target tracking tasks in heavy clutter. Particularly, subsection
6.4.1 considers a tracking scenario under moderately heavy clutter where targets exhibit
relatively more random movements, and subsection 6.4.2 presents a more challenging
scenario with highly heavy clutter where targets first intersect in a small region and
then disperse. Extensive experimental results are reported in both scenarios.

In subsections 6.4.1 and 6.4.2, we compare the proposed VB-AbNHPP-RELO
with the standard VB-AbNHPP tracker (Algorithm 10 from Section 5.5) and other
competing methods (specified later) to demonstrate its efficacy on the fixed number
multi-target tracking tasks. Datasets are generated with various trajectories, target
number, and measurement rates to simulate diverse tracking scenes with heavy clutter.
Examples of single-time-step measurements in a challenging dense clutter scene are
given in Fig. 6.5(c) and Fig. 6.8(c), where targets’ measurements (red dots) are difficult
to distinguish from the clutter (blue dots). Such an ambiguity may lead to multiple
modes in the exact posterior of target states, whereas only one of them may capture
the true targets’ positions. An algorithm that fails to keep necessary modes can easily
lose track of the targets, which explains why tracking in heavy clutter situations is
challenging.

The methods evaluated in subsections 6.4.1 and 6.4.2 can be divided into two classes:
The first class is methods based on sampling or maintaining multiple hypotheses, where
several modes may be kept in the estimate per time step at the cost of computational
time and memory. This class of methods includes Rao-Blackwellised Gibbs-AbNHPP
(G-AbNHPP) (Algorithm 2, [50]) and the popular PMBM filter [154]. In addition,
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besides the standard PMBM filter with a birth model (termed PMBM-B), we also
implement an altered version of the PMBM filter with no birth and death models
(PMBM-NB) as it matches our modelling assumptions and we found it can lead to
better performance and faster implementation in the considered tasks. However, note
that the original recycling step is kept in PMBM-NB, such that a birth process will still
be carried out in a small region. Another tracking algorithm that belongs to this class
is the Sum-Product-Algorithm-based tracker [156]. However, its computational time is
much beyond the real-time processing requirement even for our simplest task (K = 5
in Section 6.4.1), under the recommended parameters in [156]. Therefore, we do not
compare with this method in this chapter. The other class of evaluated algorithms in
our experiments only keep one mode in the estimate per time step so that the tracking
can be performed in the most efficient manner. These algorithms include the ET-JPDA
filter in [147], our original VB-AbNHPP tracker and the proposed VB-AbNHPP-RELO,
of which only the VB-AbNHPP-RELO has the capability to relocate the missed targets.

Some common settings and parameters for the simulations and tested algorithms
are listed below:

Modelling assumptions in synthetic dataset We assume that targets move
in a 2D surveillance area with each Xn,k = [x1

n,k, ẋ
1
n,k, x

2
n,k, ẋ

2
n,k]T , where xd

n,k and
ẋd

n,k (d = 1, 2) indicate the k-th target’s position and velocity in the d-th dimension,
respectively. The following models and parameters are employed in all synthetic
tracks generation and inference algorithms presented below. We utilise the constant
velocity model with a transition density in (5.9), where we have Fn,k = diag(F 1

n,k, F
2
n,k),

Qn,k = diag(Q1
n,k, Q

2
n,k), Bn,k = 0, with F d

n,k, Q
d
n,k (d = 1, 2) being specified in (6.9).

F d
n,k =

1 τ

0 1

 , Qd
n,k = 25

τ 3/3 τ 2/2
τ 2/2 τ

 , Hd =
[
1 0

]
. (6.9)

The total time steps are 50, and the time interval between measurements is τ = 1s. The
target is simulated as an extended target with an elliptical extent, and its covariance
in (5.2) on page 143 is set to Rk = 100I2, k = 1, ..., K. Alternatively, Rk can also be
interpreted as the covariance of the measurement noise. The measurement matrix in
(5.2) is designed to generate the 2D positional measurements, i.e. H = diag(H1, H2),
where Hd (d = 1, 2) is specified in (6.9).

Metric The metric utilised for measuring the tracking performance is the optimal
sub pattern assignment (OSPA) [163]. The OSPA metric accounts for both state
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estimation errors—differences between the estimated and true states of objects—and
cardinality errors—differences in the number of objects between the estimation and
the ground truth. Let c > 0, 1 ≤ p < ∞, d(x, y) denote a metric for any x, y ∈ RN .
Define d(c)(x, y) := min{d(x, y), c} as the distance between x, y cut off at c. Let Πn

the set of permutations on {1, 2, . . . , n} for any n ∈ N. Define X = {x1, . . . , xm} and
Y = {y1, . . . , yn} as finite subsets of RN . For m > n, d(c)

p (X, Y ) = d(c)
p (Y,X). For

m ≤ n, the OSPA metric is defined as

d(c)
p (X, Y ) :=

(
1
n

[
min
π∈Πn

m∑
i=1

(
d(c)(xi, yπ(i))

)p
+ cp(n−m)

])1/p

Here in this experiment, the order is set to p = 1 and the cut-off distance is c = 50.
Meanwhile, to evaluate the computational complexity, we monitor the CPU time

(System: Intel(R) Core(TM) i9-9980 CPU@2.40GHz, 32 GB RAM) required at a single
time step and averaged over all time steps. The overall CPU time presented in the
table is the averaged value across all runs.

General parameter settings We set I = 100, ϵ = 0.01 for both the standard
VB-AbNHPP tracker and the VB-AbNHPP-RELO tracker. In these experiments, the
proposed methods usually converge in fewer than 10 iterations under this setup.

For the VB-AbNHPP-RELO tracker, we search for the recently missed targets
(for h ∈ Ln but not in Ln−1) within a 490 radius, and all other missed targets (for
h ∈ Ln

⋂Ln−1) within a 1713 radius, both centred on the last tracked position. Such a
circular area is modelled by a 95% confidence region of a 2D Gaussian with covariance
200I2 and 700I2 respectively. The Gaussian prior p̃n(Xn,h) assigned for the missed
target h is designed to cover the intersection of this circular region and the sensor
surveillance area, that is, if this circular region is completely within the surveillance
area, the p̃n(Xn,h) has the corresponding mean and covariance 700I2; otherwise it is
adjusted to cover the intersection of these two regions. The velocities in p̃n(Xn,h) are
set with mean 0 and covariance 1600 for all dimensions since the targets are not biased
towards any specific direction. According to Appendix 6.B.2, eligible initialisation
threshold M init

k is set to be equal to the relocation threshold M reloc
k , and M reloc

k is set
with P reloc

thres = 0.5. For the moderately heavy clutter scenes in subsection 6.4.1, the track
loss detection parameters τk,M

los
k are set according to Appendix 6.B.1 with P los

thres =7e-
4, and the initialisation covariance C is 352I2; for the highly heavy clutter scenarios
in subsection 6.4.2, we set τk,M

los
k according to Appendix 6.B.1 with P los

thres =5e-4
to achieve a slightly less sensitive track loss detection, and C = 202I2 to maintain a
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reasonable relocation effectiveness with larger computational costs. See sections 6.2.2
and 6.2.3 for the rationale for selecting C.

For the G-AbNHNPP algorithm, the number of particles is set to 500 and the
burn-in time is 100 iterations. We choose to compare with the fast Rao-Blackwellisation
scheme of the G-AbNHPP since it outperforms other schemes in [50]. A higher tracking
accuracy may be achieved with a larger particle size, but this comes with a longer
computational time.

Since PMBM filters were originally devised for tracking a varying number of objects,
we have heavily modified them for tracking a fixed number of K targets for a fair
comparison in our experiment. In particular, for both PMBM-B and PMBM-NB, if
their multi-Bernoulli global hypothesis with the highest weight includes more than
K Bernoulli components, then the OSPA is evaluated with only the K components
with the highest existence probability. Under this setup, we find that their cardinality
estimates in our experiment are rarely wrong, and hence their OSPA merely reflects
the localisation error in most cases. Moreover, both PMBM filters are set with the
same accurate initialisation of target states, Poisson rate Λ, and target extent R as
in other competing methods. Specifically, at time step 1, both PMBM filters start
with a single multi-Bernoulli hypothesis with K components, each associated with an
existence probability 1, and a ground truth target state, target extent, and Poisson
rate (i.e. their priors all have an extremely small variance). The transitions of rates
and shapes are removed such that the rates and shapes are nearly constant over time,
allowing the PMBM filters to use ground truth information of Λ and R at every time
step, like the other compared methods.

Other parameters of the PMBM-B and the PMBM-NB filters are listed as follows:
For all scenarios, both the object’s survival probability and the detection probability are
set to 1. The ellipsoidal gate size in probability is 0.999. The number of global hypoth-
esis is capped at 100. The DBSCAN algorithm is run with distance thresholds between
5 and 50, with a maximum number of 20 assignments. For PMBM-NB, the Poisson
birth model is neglected by setting the intensity as a single component with weight 0.01
and Gaussian density with mean [0, 0, 0, 0]T and covariance diag(0.01, 0.25, 0.01, 0.25),
covering a negligible surveillance area. Note that there will still be Poisson intensity
for undetected targets because of the recycling step in the PMBM algorithm. For
PMBM-B, its Poisson intensity is set as a single component with weight 0.1 and Gaus-
sian density with mean [0, 0, 0, 0]T and covariance diag(40000, 16, 40000, 16), covering
the circular region where the targets most likely appear/lose track. These parameters
are manually tuned for good tracking performance and efficient implementation. For



6.4 Simulation 203

Fig. 6.5 Example synthetic trajectories and measurements in the tested dataset in
Section 6.4.1. Target number K in figure (a) and (b) are 50 and 10 respectively. The
black circles, red triangles and blue squares mark the targets’ positions at the time
step 1, 11 and 31. The dense grey dots in (a) and (b) are all measurements received
from all time steps. Figure (c) shows the measurements received at the time step 11
from the same dataset as figure (b). Red dots are the measurements generated by
the 10 targets (whose position is in the red triangles in figure (b)), and blue dots are
the clutter received at the time step 11. Figure (c)’s range [−750, 750]× [−750, 750]
corresponds to the white dashed square depicted in figure (b).

example, the grid for DBSCAN clustering is carefully selected such that a finer grid no
longer improves the tracking accuracy but only introduces extra computational time in
our tracking examples.

6.4.1 Tracking multiple targets under moderately heavy clut-
ter

This section evaluates the proposed VB-AbNHPP trackers for tracking randomly
moving targets that are closely spaced in moderately heavy clutter. Specifically, five
scenarios are considered with the target number increasing from 5, 10, 20, 30 to 50.
For each scenario, 100 datasets are generated, each with a completely different set of
synthetic targets’ trajectories and measurements. Each synthetic trajectory in each
dataset was randomly initiated on a circle with a radius of 750 from the origin (0, 0),
and it has an initial velocity of 30 pointing toward the origin. This simulates a scenario
where targets move closer together before gradually spreading out. Two example
tracks from 50 targets and 10 targets are shown in Fig. 6.5(a) and (b), where black
circles, red triangles and blue squares mark the targets’ positions at time step 1, 11
and 31 respectively. It can be seen that during the first 30 time steps, targets are
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Table 6.1 Tracking performance comparisons for closely spaced randomly moving
targets under moderately heavy clutter.

OSPA (mean ±1 standard deviation) | CPU time (s)
K ET-JPDA PMBM-NB PMBM-B
5 7.24±2.31 | 0.02 6.19±1.32 | 0.44 7.29±2.26 | 4.36
10 21.42±4.13 | 0.08 6.65±1.23 | 1.86 8.09±2.11 | 5.63
20 22.47±2.73 | 0.22 8.67±2.29 | 2.43 12.17±2.94 | 11.57
30 24.09±2.26 | 0.39 10.20±1.80 | 3.24 15.63±2.74 | 16.63
50 25.06±1.82 | 0.86 14.09±1.71 | 6.14 19.97±2.32 | 40.98

OSPA (mean ±1 standard deviation) | CPU time (s)
K G-AbNHPP VB-AbNHPP VB-AbNHPP-RELO
5 5.65±0.43 | 0.40 6.12±1.83 | 5e-5 5.70±0.41 | 3e-3
10 5.79±0.84 | 0.88 6.24±1.34 | 1e-4 5.72±0.35 | 0.01
20 6.16±0.95 | 1.98 7.05±1.34 | 3e-4 5.95±0.41 | 0.05
30 6.78±1.24 | 2.76 7.35±1.29 | 5e-4 6.06±0.33 | 0.14
50 7.95±1.46 | 4.12 8.64±1.13 | 1e-3 6.45±0.34 | 0.87

closely spaced, and track coalescence occurs frequently with its frequency and severity
increasing with target number. After the 30-th time step, the targets gradually move
away from each other and tracking becomes less difficult.

For all datasets of this moderately heavy clutter scene, we set the Poisson rate
Λk = 5 for all targets (k = 1, 2, ..., K). The clutter density (i.e. Λ0/V ) is 10−4 per
unit area, and correspondingly, the average Λ0 for each scenario with target number K
being 5, 10, 20, 30 and 50 are 775, 1175, 1761, 1967 and 2521, respectively. With such
a high clutter, the measurements received from all time steps (showed as grey dots
in Fig. 6.5(a) and (b)) are visually overlapped. The measurements received from a
single time step are also plotted in Fig. 6.5(c) where the red dots are measurements
generated by 10 targets that are located at the red triangles in Fig. 6.5(b), and the
blue dots are the clutter received in this single time step. Such dense clutter causes
ambiguity in targets’ true positions, highlighting another challenge of our experiment,
in addition to the frequent coalescences that occur when target numbers are high.

The tracking results for all methods are presented in Table 6.1. For each K =
5, 10, ..., 50, the mean OSPA and CPU time are first averaged over all 50 time steps,
and then averaged over all 100 datasets. The standard deviation of these 100 average
OSPA is also shown in Table 6.1. We can observe that our method has a promising
performance in both time efficiency and tracking accuracy. In terms of efficiency, our
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standard VB-AbNHPP tracker is the fastest algorithm, and its efficiency advantage
becomes more evident as the target number increases. The proposed VB-AbNHPP-
RELO tracker naturally requires extra computational time than the standard VB-
AbNHPP tracker, but it is still more efficient than all other compared methods, and
the advantages over the PMBM filter and G-AbNHPP are particularly significant.
In terms of tracking accuracy, the proposed VB-AbNHPP-RELO outperforms all
other compared methods in all considered scenarios, except for being comparable to
G-AbNHPP with similar average OSPA values. Based on the experimental results,
the remaining tested algorithms can be ranked in terms of their average OSPA from
lowest to highest as follows: G-AbNHPP, PMBM-NB, PMBM-B, ET-JPDA, and our
standard VB-AbNHPP tracker.

Fig. 6.6 Mean OSPA metric over 50 time steps for tracking scene in Section 6.4.1. Blue
dashed line is associated with the right y-axis, and all other lines are with the left
y-axis.
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Fig. 6.7 Mean OSPA of VB-AbNHPP-RELO and standard VB-AbNHPP over 50 time
steps for cases in Section 6.4.1.

To illustrate detailed tracking performance over time, the mean OSPA over 50 time
steps for each scenario is plotted in Fig. 6.7. In the beginning stage of each tracking
scene, the G-AbNHPP has the lowest mean OSPA, followed by our variational Bayes
trackers. This advantage of G-AbNHPP lasts shorter as tracking scenarios become more
challenging, i.e. when K grows. As time goes on, the proposed VB-AbNHPP-RELO
outperforms G-AbNHPP and always achieves the lowest OSPA in the last few time
steps, owing to the proposed effective relocation strategy. Such a phenomenon about
G-AbNHPP and VB-AbNHPP-RELO is reasonable, and we analyse it below.

Recall that all tested methods are given an identical and accurate initialisation of
target states, and the G-AbNHPP can retain different modes in the posterior with
different samples at the cost of computational time and memory. In the beginning of
each tracking scene, a limited number of samples in G-AbNHPP are likely to retain
all necessary modes and thus all targets can be tracked successfully. In contrast, our
efficient VB-AbNHPP-RELO always keeps a single mode at each time step, making it
more likely to lose track. Although the proposed relocation strategy can retrieve the
missed targets, the track loss prior to the successful relocation inevitably leads to a
deterioration of the mean OSPA. Therefore, the G-AbNHPP typically outperforms the
VB-AbNHPP-RELO in the beginning of a tracking task. However, in each new time
step, there is always a chance that the limited number of samples in G-AbNHPP may
miss some important mode that can potentially lead to track loss. Subsequently, as
time goes on, G-AbNHPP is more likely to lose track and has an irreparably high OSPA
due to its inability to relocate missed targets. For more challenging tracking tasks
where there are more modes in the posterior, G-AbNHPP are less likely to retain all
the necessary modes using the same sample size, resulting in more frequent track losses.
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Accordingly, the OSPA difference (both in Table 6.1 and in the last few time steps in
Fig. 6.7) between G-AbNHPP and VB-AbNHPP-RELO becomes more significant as
K increases, since the latter maintains a stable tracking performance by constantly
detecting and relocating the missed targets across all tracking scenes.

Although outperformed by our more efficient VB-AbNHPP-RELO in challenging
tracking tasks (e.g. K ≥ 10), the G-AbNHPP is still advantageous over all other
tested methods. Other tested methods that retain multiple modes are PMBM-NB and
PMBM-B, where different hypotheses of measurement associations are recorded at
each time step. In particular, PMBM-NB does better than PMBM-B in all considered
scenarios. However, they do not perform very well: apart from outperforming the
ET-JPDA, both PMBM filters have a higher overall OSPA in Table 6.1 than all other
methods, including our standard VB-AbNHPP that is also over thousands of times
faster. This trend is also reflected in Fig. 6.7, where both PMBM filters always have a
higher OSPA than the G-AbNHPP and our variational Bayes trackers, except that the
PMBM-NB slightly outperforms our standard VB-AbNHPP tracker in the last few
time steps in the cases K = 5 and K = 10. One factor that could lead to the high
OSPA of PMBM filters is the poor performance of the clustering algorithm in this
heavy clutter, which further results in inaccurate association hypotheses.

To present a clearer picture of the efficacy of the proposed missed target detection
and relocation strategy, the mean OSPAs of the standard VB-AbNHPP tracker and
the VB-AbNHPP-RELO are shown in Fig. 6.7. In the beginning of each tracking
scene, the mean OSPAs of two trackers are overlapped, meaning that no track loss
is detected in this period and both trackers perform exactly the same. As time goes
on, while the OSPA of the standard VB-AbNHPP continues to grow, the OSPA of
the VB-AbNHPP-RELO starts to decrease over the rest of time, validating clearly the
superiority of the proposed detection and relocation strategy. In particular, the decline
in the OSPA of the VB-AbNHPP-RELO is because 1) tracking tasks become easier in
the later stage of our simulation as targets become progressively more separated; and
2) missed targets are successfully detected and relocated. Furthermore, we note that
the OSPA of the VB-AbNHPP-RELO in Fig. 6.7 always decreases and finally stabilises
at a similar value over different Ks, whereas the OSPA of the standard VB-AbNHPP
and other methods in Fig. 6.6 increases and stabilises at a higher value as K increases.
This demonstrates the robustness of our VB-AbNHPP-RELO tracker, i.e. despite the
fact that the coalescence of more targets may result in a higher OSPA at some point,
our effective relocation strategy can always retrieve missed targets and eventually reach
a robust OSPA value when targets are separated from each other.
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Fig. 6.8 Trajectories and example measurements in the two considered coalescence
cases in Section 6.4.2. Target number K in figure (a) and (b) are 20 and 8 respectively.
The black circles, red triangles and blue squares mark the targets’ positions at time
steps 1, 11 and 31. The dense grey dots in (a) and (b) are all measurements received
from all time steps. Figure (c) shows the measurements received at the time step 11
from the same dataset as figure (b). Red dots are the measurements generated by
the 10 targets (whose position is in the red triangles in figure (b)), and blue dots are
the clutter received at the time step 11. Figure (c)’s range [−750, 750]× [−750, 750]
corresponds to the white dashed square depicted in figure (b).

Finally, we note from Fig. 6.6 and 6.7 that the proposed VB-AbNHPP-RELO is the
only tested method whose OSPA decreases after the first 10 time steps. This is again
due to the significant advantage of our effective relocation method over other existing
methods. On the contrary, the OSPAs of all other methods either grow or remain the
same even when the coalescence is less severe, meaning that missed targets are seldom
retrieved and more targets may be lost due to the high clutter. In particular, we may
find that in such a heavy clutter tracking scene, the birth process in PMBM-B is unable
to retrieve the missed targets as effectively as the proposed relocation strategy. This
may be because: 1) there is a distinct mismatch between the birth process and our
model assumptions, and 2) the birth process cannot cover the whole surveillance area
due to the significant computational time required.

6.4.2 Analysis of two example coalescence scenarios under
extremely heavy clutter

In this section, we consider two specific coalescence scenarios where multiple moving
objects intersect around the origin point at a specific time. Targets’ trajectories of
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these two cases, which feature K = 8 and K = 20 objects, are shown in Fig. 6.8(b)
and (a), respectively. In both scenarios, the initial positions of targets are equally
spaced on a circle of radius 750 from the origin, and each target’s initial velocity is 50
pointing towards the origin. Compared to the relatively random target’s movement
in Section 6.4.1, here the targets’ trajectories are more straight, and all targets now
intersect in a smaller region between time steps 11 and 25, see Fig. 6.8.

Here, two coalescence scenarios are designed under extremely heavy clutter to verify
the advantages of our variational trackers in more challenging settings. In particular,
the clutter density is 3× 10−4 per unit area, which leads to a Poisson rate of 3038 for
K = 8, and 6916 for K = 20. Poisson rates are 6 for all targets. For each scenario,
100 synthetic measurement sets are generated under ground truth trajectories in Fig.
6.8 on page 208, where grey dots denote one example measurement set for all time
steps. Fig. 6.8(c) shows the measurements received at a single time step, where the
true measurements (red dots) are largely buried in heavy clutter (blue dots), which
can hardly be distinguished with human eyes. Note that Fig. 6.8(c) is on the same
scale as Fig. 6.5(c), and thus we can easily visualise the increase in clutter density in
Fig. 6.8(c), indicating an increased difficulty in performing tracking tasks.

Table 6.2 Tracking performance comparisons for intersecting targets under highly heavy
clutter.

OSPA (mean ±1 standard deviation) | CPU time (s)
Method 8 targets 20 targets

ET-JPDA 22.03±2.48 | 0.16 35.40±1.17 | 0.96
PMBM-NB 7.53±2.14 | 2.15 9.29±1.94 | 6.68
PMBM-B 8.26±2.38 | 10.17 13.09±3.21 | 21.53

G-AbNHPP 6.10±1.42 | 1.31 6.48±1.28 | 4.07
VB-AbNHPP 6.36±1.78 | 2e-4 7.62±1.89 | 1e-3

VB-AbNHPP RELO 5.63±0.55 | 0.02 6.16±0.64 | 0.44

The overall tracking performance is presented in Table 6.2. It can be observed
that the performance of all tested methods exhibits a pattern consistent with that
in Table 6.1 in Section 6.4.1. For both two coalescence scenarios, the proposed VB-
AbNHPP-RELO has the lowest mean OSPA and the second fastest implementation.
Our standard VB-AbNHPP tracker is the fastest algorithm, but its tracking accuracy
is surpassed by the G-AbNHPP and VB-AbNHPP-RELO. Note that in scenarios
with 20 targets amidst heavy clutter, track losses become frequent, resulting in higher
average OSPA values across all methods. This in turn showcases the advantage of
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Fig. 6.9 Estimated trajectories (colored lines and red crosses) from (a) ET-JPDA, (b)
PMBM-B, (c) VB-AbNHPP and (d) VB-AbNHPP RELO for a particular measurement
set of K = 8 targets. The black dashed lines are the ground truth.

the proposed VB-AbNHPP-RELO tracker since it can relocate lost targets, resulting
in better accuracy. However, the increased track loss events mean the VB-AbNHPP-
RELO tracker resorts to the relocation strategy more often, and thus computational
time rises, especially when contrasted with simpler situations with 8 targets. The
ranking of all tested methods in terms of the mean OSPA (from low to high) for both
scenarios is: VB-AbNHPP- RELO, G-AbNHPP, standard VB-AbNHPP, PMBM-NB,
PMBM-B, and ET-JPDA.
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We select a specific measurement set from 100 datasets for K = 8, where there are
‘misleading’ measurements that can trick trackers into steering the estimated trajectory
of a particular target in the wrong direction. The estimated trajectories of four methods
(ET-JPDA, PMBM-B, VB-AbNHPP and VB-AbNHPP RELO) are depicted in Fig.
6.9. For brevity, the trajectories of PMBM-NB and G-AbNHPP are not shown, but
they are similar to Fig. 6.9(b) and (c) respectively. From Fig. 6.9 we can see that, once
the target in red line intersects with the target in cyan line, all methods incorrectly
track the red target, and the estimated tracks of the red and cyan targets coincide.
However, the proposed VB-AbNHPP-RELO can detect track loss in a few time steps
and successfully relocate it to its true position, whereas all other methods continue
to track the red target falsely ever since its coalescence. In contrast, even though the
track loss occur within the specified birth region in this example, the birth process in
PMBM-B fails to localise the missed target. Consequently, VB-AbNHPP-RELO is the
only method that correctly tracks all targets at the end of the task, demonstrating the
superiority of our effective missed target detection and relocation strategy.

Finally, the mean OSPAs at 50 time steps for all methods are shown in Fig.
6.10 to reflect the tracking performance over time. All methods demonstrate similar
patterns as in Fig. 6.7, and the analysis and comparisons of the general performance
of these methods can be found in Section 6.4.1. Here we highlight two advantages of
the proposed VB-AbNHPP-RELO: its robust tracking performance in handling the
coalescence, and its lowest mean OSPA in the last few time steps. In particular, all
other methods have a more evident increase in OSPA when the coalescence occurs
between time steps 11 and 25, whilst the OSPA of VB-AbNHPP-RELO does not
change greatly as missed targets are detected and relocated timely. For PMBM-NB
and PMBM-B algorithms, the high OSPA at the moment of coalescence may be due
to the limitation of the embedded clustering algorithm. We observe a drop (between
time steps 17 and 19) from this temporarily high OSPA in PMBM filters when K = 8,
but the drop does not happen in the more challenging case of K = 20. In the last
few time steps in Fig. 6.8, the proposed VB-AbNHPP-RELO always has the lowest
OSPA, demonstrating again the superiority of the proposed relocation strategy in the
long-term tracking tasks.

6.5 Conclusion

In this chapter, we extend the standard VB-AbNHPP tracker in Section 5.5 from the
previous chapter to a VB-AbNHPP-RELO tracker that can robustly track closely-
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Fig. 6.10 Mean OSPA metric over 50 time steps for tracking scenes in Section 6.4.2.
Blue dashed line is associated with the right y-axis, and all other lines are with the left
y-axis.

spaced targets in heavy clutter by automatically detecting and relocating the missed
targets. This is based on the proposed novel variational localisation strategy, which
can efficiently localise the target from a large surveillance area in heavy clutter. The
developed trackers offer fast and parallelisable implementations with superior tracking
and estimation performance, making them promising candidates in large scale target
tracking scenarios. In particular, when tracking a large number of objects under
heavy clutter, the VB-AbNHPP-RELO demonstrates significantly better tracking
performance over existing trackers in terms of both accuracy and efficiency.

The proposed variational localisation strategy may be extended to incorporate
measurements from multiple time steps to offer a more reliable estimation. This
localisation strategy can also facilitate joint detection and tracking task, and a more
general VB-AbNHPP-RELO tracker that can handle other unknown variables, such as
Poisson rates, measurement covariance, and the target number. This will be discussed
in future work.



6.A Further discussions on Remark 1 in Section 6.2.2 213

Appendix 6.A Further discussions on Remark 1 in
Section 6.2.2

Although difficult to analyse theoretically, Remark 1 in Section 6.2.2 can be informally
justified by looking into the iterative updates under a construction of the initialisation
in (6.1). First, we describe some behaviours of these iterative updates, which will be
used to illustrate Remark 1 in Section 6.2.2 in detail.

With the initial q(0)(θn) in (6.1), only measurements that lie in the local region, i.e.
the 95% confidence ellipse of N (ms, C), have a considerable probability to associate with
the target. Conditional on this q(0)(θn), it then produces a pseudo measurement Y (0)

n

(evaluated according to (5.27)) that locates at the weighted average of those noticeable
measurements with a covariance R(0)

n (i.e. evaluated according to (5.26)). For a local
region that contains at least one measurement, the denominator in (5.26) is considerable,
leading to a much smaller covariance R(0)

n compared to the large positional covariance
of the uncertain prior p(Xn,1). Consequently, according to (5.25), the position in the
updated q(1)(Xn,1) at the first iteration has a mean that is approximately equal to Y (0)

n ,
and a covariance close to R(0)

n . Empirically, the next updated q(2)(Xn,1) will typically
cover the measurement nearest to Y (0)

n . Then,
1) If there are dense measurements near or within the high confidence region of q(2)(Xn,1):
The subsequent iterative coordinate ascent updates will refine the q(Xn,1) at a smaller
scale and converge to the q∗(Xn,1) that encompasses those dense measurements in the
end. However,
2) If measurements are distributed more evenly or scattered around the high confidence
region of q(2)(Xn,1): The subsequent iterative coordinate ascent updates will enlarge the
covariance of q(Xn,1) to cover as many of those measurements as possible, and finally
converge to the q∗(Xn,1) that equals the uncertain prior p(Xn,1), i.e. q∗(Xn,1) = p(Xn,1).

Remark 1 in Section 6.2.2 holds for a properly chosen C since in this case, we expect
Y (0)

n , which is approximately the weighted average of the measurements covered by the
95% confidence ellipse of N (ms, C), is close to the location with the greatest density of
measurements in this local area. Then the converged q∗(Xn,1) is very likely to capture
this most probable target location. However, if C is too large, Remark 1 in Section 6.2.2
hardly stands. Since in this case, the 95% confidence ellipse of N (ms, C) (s = 1, 2, ..., N)
will include too many uniformly distributed clutter, resulting in their weighted average
being close to the center of this local area, i.e. Y (0)

n ≈ ms. Subsequently, depending on
how the measurement(s) within the high confidence region of q(2)(Xn,1) are distributed,
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the CAVI either converges to q∗(Xn,1) that encompasses the dense measurements
nearest to ms, or traps in the local optimum with q∗(Xn,1) = p(Xn,1).

Appendix 6.B Parameter selection for missed ob-
jects detection and relocation

In this appendix, we discuss the choice of the track loss detection parameters τk,M
los
k ,

relocation threshold M reloc
k , and eligible initialisation threshold M init

k (k = 1, 2, ..., K)
for the developed full VB-AbNHPP-RELO tracker. We assume the target and clutter
rate Λ and measurement covariance R are known to us. We will show that τk,M

los
k ,

M reloc
k ,M init

k can be automatically selected by specifying probabilities P los
thres ∈ (0, 1)

and P reloc
thres ∈ (0, 1) (both defined below) respectively.

6.B.1 Guide for the choice of τk and M los
k

When the event E in (6.7) on page 196 is used as the track loss criterion, the higher the
M los

k , the less likely that event E will happen, and the more sensitive the algorithm is
to the potential track loss. A lower τk leads to an event E that considers the M̂n,k from
more recent time steps, and hence better reflecting the timely tracking performance.
However, if τk and Λk are both very low (e.g. τk = 1 and Λk = 1), it is very likely
that no measurement is generated from the target k during these τk time steps, which
makes the event E likely to occur even for a successful tracker. Therefore, a trade-off
has to be made when choosing τk and M los

k .
This subsection describes a strategy to automatically select suitable τk and M los

k

such that the event E in (6.7) rarely happens for a successful tracker. We define
P los

thres ∈ (0, 1) as the probability of the rare event E occurring, given that target k has
been successfully tracked. Subsequently, the rationale behind our track loss criterion
can be explained with the idea of hypothesis testing. Specifically, if such a rare event E
(in terms of a successful tracker) occurs, it implies that the target may not be properly
tracked. Furthermore, since the event E is more likely to happen when the algorithm
loses track of the target (as discussed in Section 6.3.1), we conclude that the track of
the target k has been lost.

To select τk and M los
k , we first specify the value of P los

thres. Then for each k =
1, 2, ..., K, τk and M los

k are evaluated based on the specified P los
thres according to three

steps:

Step 1: Set τk =
⌈

1
Λk

log 1
P thres

⌉
, where ⌈·⌉ is the ceil function.
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Step 2: Obtain a continuous increasing function F̃τkΛk
: [0,∞) → [FτkΛk

(0),∞) by
interpolating (e.g. Spline interpolation) (x, F̃τkΛk

(x)) from the following series of
coordinates: (0, FτkΛk

(0)), (1, FτkΛk
(1)), (2, FτkΛk

(2)), ..., where FτkΛk
is the exact

Poisson cumulative distribution function (CDF) with rate parameter τkΛk.

Step 3: Find the M los
k such that F̃τkΛk

(M los
k ) = P los

thres.

We now explain the rationale behind these steps. Note that the exact CDF for the
decimal variable∑n

t=n−τk+1 M̂t,k (i.e. the estimated cumulative measurement numbers in
(6.7)) is intractable. However, according to the additive property of Poisson distribution,
the integer variable ∑n

t=n−τk+1 Mt,k (i.e. the exact cumulative measurement numbers)
has a Poisson CDF FτkΛk

. With the intuition that a successful tracker should not
produce an estimate M̂t,k that greatly deviates from the exact Mt,k, we use F̃τkΛk

, i.e. a
continuous increasing approximation of FτkΛk

constructed in step 2, as an approximate
CDF for the estimate ∑n

t=n−τk+1 M̂t,k generated from a successful tracker. A noteworthy
property of F̃τkΛk

is that it is continuous increasing, which makes it better to describe
the decimal variable ∑n

t=n−τk+1 M̂t,k than the step-wise function FτkΛk
.

Subsequently, the probability of the event E in (6.7) conditional on the target k
having been successfully tracked can be approximated by F̃τkΛk

(M los
k ), i.e. P los

thres ≈
F̃τkΛk

(M los
k ). Therefore, once τk and P los

thres are specified, we can find M los
k by Step

3. Note that the uniqueness of M los
k found in Step 3 is guaranteed by the increasing

property of F̃τkΛk
, and the existence of M los

k is guaranteed by the continuous property
of F̃τkΛk

and the fact that F̃τkΛk
(0) = FτkΛk

(0) ≤ P los
thres. This inequality is always

satisfied owing to τk constructed in Step 1. Specifically, τk in Step 1 is essentially the
minimal integer that satisfies FτkΛk

(0) ≤ P los
thres. Such a small τk ensures our track loss

criterion E reflects timely tracking performance.

6.B.2 Guide for the choice of M reloc
k and M init

k

It is practically useful to choose M reloc
k based on a specified probability P reloc

thres ∈ (0, 1),
where P reloc

thres is the probability of the effective relocation criterion in (6.8) being satisfied,
conditional on a successful relocation. On the one hand, we typically require P reloc

thres > 0.2
to ensure the effective relocation criterion is easy to meet, otherwise the algorithm
may take too many steps to find a convincing position for missed target. On the other
hand, we also need to ensure P reloc

thres is not too high, since a high P reloc
thres often leads to

frequent relocations and bears a high chance of a false relocation that may deteriorate
the tracking performance.
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The relocation threshold M reloc
k can be selected according to P reloc

thres in a similar
fashion as in Appendix 6.B.1. Specifically, we first use a continuous increasing function
F̃Λk

: [0,∞) → [FΛk
(0),∞) to approximate the CDF for the variable ∑Mn

j=0 q
w
n (θn,j =

k) in (6.8) conditional on a successful relocation with the s-th initialisation. This
approximate CDF F̃Λk

can be obtained by carrying out Step 2 described in Appendix
6.B.1 with τk being 1. Then find M reloc

k such that F̃Λk
(M reloc

k ) = 1− P reloc
thres.

Finally, we discuss the choice of the eligible initialisation threshold M init
k , which is

employed in Algorithm 11 to skip unnecessary initiasations to accelerate the relocation
procedure. This eligible initialisation threshold M init

k can simply be set as M reloc
k − 1

or M reloc
k − 2. Such a design of M init

k satisfies M init
k < M reloc

k . Therefore the algorithm
never skip exploring any local region that encompasses enough measurements to meet
the effective relocation criterion in (6.8). Moreover, by setting a lower M init

k (e.g.
M init

k = M reloc
k − 2), the algorithm also explores local regions that include fewer

measurements, which sometimes is necessary. For example, when the true missed
target is at the edge of a local region, only a few target-oriented measurements may lie
in this local region. In this case, there may be less than M init

k measurements in this
local region. However, with the corresponding initialisation, it is possible for CAVI to
localise the missed target and the effective relocation criterion is still met.

Appendix 6.C Derivation of the ELBO for the re-
location strategy

In this appendix, we derive the explicit form of the ELBO in (6.3) up to an addi-
tive constant for implementing the relocation strategy. In particular, we compute
Fn,h(qn(θn), qn(Xn,h))− c, where c is the constant from (6.3). This can be expressed
as follows, based on (6.3):

Fn,h(qn(θn), qn(Xn,h))− c =−KL(qn(θn)||p(θn|Mn,Λ))−KL(qn(Xn,h)||p̃n(Xn,h))
+ Eqn(θn)qn(Xn,h)q∗

n(Xn,h−) log p(Yn|θn, Xn). (6.10)

The first negative KL divergence is

−KL(qn(θn)||p(θn|Mn,Λ)) =
Mn∑
j=1

K∑
k=0

qn(θn,j = k) log p(θn,j = k|Mn,Λ)
qn(θn,j = k)

=
Mn∑
j=1

K∑
k=0

qn(θn,j = k) log Λk

Λsumqn(θn,j = k) . (6.11)
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Denote the mean and covariance of p̃n(Xn,h) as µ̃n,h and Σ̃n,h; and recall that qn(Xn,h) =
N (Xn,h;µh

n|n,Σh
n|n).Then the second negative KL divergence between two multivariate

normal in (6.10) is

−KL(qn(Xn,h)||p̃n(Xn,h))

=− 1
2

Tr(Σ̃−1
n,hΣh

n|n) + (µ̃n,h − µh
n|n)⊤Σ̃−1

n,h(µ̃n,h − µh
n|n)−Dx + log det Σ̃n,h

det Σh
n|n

 , (6.12)

where Dx is the dimension of Xn,h. Note evaluating this divergence requires inverting
Σ̃n,h. Since Σ̃n,h is an uninformative prior assigned for the missed target, we can always
let it be a diagonal matrix, which leads to a simple and efficient inversion.

By using the formula for the expectation of quadratic forms, the last term in (6.10)
is

Eqn(θn)qn(Xn,h)q∗
n(Xn,h−) log p(Yn|θn, Xn)

=
Mn∑
j=1

qn(θn,j = 0) log 1
V

+
Mn∑
j=1

K∑
k=0

qn(θn,j = k)
[
−D2 log 2π − 1

2 log detRk

]

+
Mn∑
j=1

K∑
k=0

qn(θn,j = k)
[
−1

2Eqn(Xn,h)q∗
n(Xn,h−)(Yn,j −HXn,k)⊤R−1

k (Yn,j −HXn,k)
]

=− 1
2

Mn∑
j=1

K∑
k=0,k ̸=h

qn(θn,j = k)Uk∗
n

−1
2

Mn∑
j=1

qn(θn,j = h)
[
(Yn,j −Hµh

n|n)⊤R−1
k (Yn,j −Hµh

n|n) + Tr(R−1
k HΣh

n|nH
⊤) + log detRk

]

+
(
D

2 log 2π + log 1
V

) Mn∑
j=1

qn(θn,j = 0)− DMn

2 log 2π (6.13)

where we use (5.68) to obtain the last line, and Uk∗
n is defined as

Uk∗
n = (Yn,j −Hµk∗

n|n)⊤R−1
k (Yn,j −Hµk∗

n|n) + Tr(R−1
k HΣk∗

n|nH
⊤) + log detRk. (6.14)
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Finally the ELBO (with an additive constant) in (6.10) is the summation of (6.11),
(6.12), and (6.13), i.e.

Fn,h(qn(θn), qn(Xn,h))− c

=
Mn∑
j=1

K∑
k=0

qn(θn,j = k) log Λk

Λsumqn(θn,j = k) −
1
2

Mn∑
j=1

K∑
k=0,k ̸=h

qn(θn,j = k)Uk∗
n

− 1
2

Mn∑
j=1

qn(θn,j = h)
[
(Yn,j −Hµh

n|n)⊤R−1
k (Yn,j −Hµh

n|n) + Tr(R−1
k HΣh

n|nH
⊤) + log detRk

]

− 1
2

Tr(Σ̃−1
n,hΣh

n|n) + (µ̃n,h − µh
n|n)⊤Σ̃−1

n,h(µ̃n,h − µh
n|n) + log det Σ̃n,h

det Σh
n|n


+
(
D

2 log 2π + log 1
V

) Mn∑
j=1

qn(θn,j = 0) + Dx

2 −
DMn

2 log 2π, (6.15)

where Uk∗
n is given in (6.14), and the last two terms in the final line are constants that

can be omitted when computing the ELBO. Additionally, Uk∗
n (k = 1, 2, ..., K) is also a

constant when implementing the relocation strategy, and it can be precomputed using
the output from the standard tracker.



Chapter 7

Conclusions and Future Work

The effective implementation of Bayesian inference for time series processing tasks,
such as object tracking, relies on the careful development and integration of both
stochastic modelling and approximate Bayesian inference, as demonstrated in this
thesis. This thesis makes novel contributions in both modelling and inference, with
the application aspects focusing on object tracking and intent inference. We now
summarise the contribution and outline future work in terms of the methodology and
applications aspects, respectively.

7.1 Conclusions

From the theoretical and methodology aspects, Chapters 2 and 3 emphasise the
development of innovative stochastic models using stochastic differential equation,
while Chapters 4, 5 and 6 mainly contribute novel approximate Bayesian inference
(particularly variational Bayes) schemes.

Stochastic modelling The notable contributions in stochastic modelling include:

• A novel stable Lévy modelling framework is introduced in Chapter 3 for tracking
applications. This framework improves conventional continuous-time dynamic
models by replacing the Gaussian driven noise with its natural heavy-tailed
extension, the α-stable noise, as suggested by the generalised central limit theorem.
More likely to exhibit extreme values, the resulting stable Lévy state-space
models, expressed as continuous-time Lévy processes, can better capture sharp
changes in the state, showcasing their capability for modelling erratic maneuvering
behaviors, such as swift turns or abrupt accelerations. The proposed models are
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constructed in a conditionally Gaussian form, thus ensuring the tractability of
employing Rao-Blackwellisation for enhanced Monte Carlo inference. Improved
tracking performance is demonstrated with maritime vessel data compared to a
conventional Gaussian dynamic model.

• Introduction and exploration of various stochastic models exhibiting mean-
reverting behavior for modelling motion towards a specified destination, as
demonstrated in Chapters 2 and 3 for intent inference applications. These mod-
els cover a range of continuous time stochastic processes, including a class of
multidimensional Ornstein-Uhlenbeck (OU) processes, jump diffusions, stable
Lévy processes, and bridging distributions or conditioned Markov processes (by
conditioning the future arriving state).

Approximate Bayesian inference The notable contributions in approximate
Bayesian inference include:

• Chapter 4 proposes a Conditionally Factorised Variational Bayes (CVB) algo-
rithm to address the challenges of variational Bayes for highly correlated variables,
where standard mean-field approximations lead to large inference errors. The
algorithm is based on a proposed novel conditionally factorised variational fam-
ily, which can account for variable dependencies with user-selected details and
encompasses the standard mean-field family as a special case. With the derived
coordinate ascent updates, CVB ensures a better Evidence Lower Bound (ELBO)
with a finer conditional structure, thus offering a flexible trade-off between compu-
tational cost and inference accuracy. Additionally, an importance sampling-based
CVB algorithm is developed for approximating intractable updates, yielding an
estimated ELBO as a byproduct. We prove useful properties of the algorithm,
such as the monotonically increasing estimated ELBO, discuss its applicability,
and showcase its guaranteed performance improvements over standard mean-field
coordinate ascent variational inference (CAVI).

• Chapter 6 introduces an innovative approach to seek the global optimum in
variational Bayes for the heavy clutter localisation problem by employing multiple
independent (hence parallelisable) CAVIs. Each CAVI features a specifically
designed initialisation to target a selected small region, enabling it to find the
optimal solution within that region. By comparing the resulting ELBOs, we
identify the best local optima and enhance global optimum discovery.
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• A unified coordinate ascent variational filtering framework that allows for both
filtering with and without static parameter learning is presented in Section 5.3.
The framework is designed for a generic dynamic system, enabling us to flexibly
treat some newly received information (e.g. the cardinality of measurements) as a
known quantity for both prediction and update steps. Additionally, the framework
can handle likelihood functions that are known only up to a normalisation constant
and can even accommodate known functions related to the state variable, rather
than directly involving the measurement.

Multi-object tracking and intent inference From the application aspects, the
intent inference and single object tracking are considered in Chapters 2 and 3, while
Chapters 5 and 6 focus on multi-object tracking tasks. Our notable contributions for
multi-object tracking and intent inference can be summarised as:

• Chapter 5 introduces the variational Bayes association-based NHPP tracker
(VB-AbNHPP) tracker, which efficiently performs tracking, data association, and
learning of target and clutter rates with a parallelisable implementation. The
tracker can also be extended for online learning of other static parameters, such
as object extent. The proposed tracker greatly outperforms competing methods
in terms of efficiency. In the simulated relatively simple tracking scenes we have
tested, its performance is comparable to that of a Markov chain Monte Carlo
(MCMC)-based tracker, while still outperforming other methods, showcasing its
effectiveness in these scenarios.

• Chapter 6 addresses highly challenging tracking scenarios involving closely-spaced
objects and extremely heavy clutter by extending the VB-AbNHPP tracker. A
novel variational localisation strategy that enables the rapid rediscovery of missed
targets in extensive surveillance areas is introduced. Additionally, a novel track
loss detection strategy for the VB-AbNHPP tracker is developed. By integrating
these strategies into the standard VB-AbNHPP tracker, a robust VB-AbNHPP
tracker capable of detecting and recovering from track loss is created. This
enhanced tracker significantly outperforms existing trackers in terms of both
accuracy and efficiency in simulated challenging environments.

• To tackle the intent inference task, this thesis models the intended destination
as an unknown parameter that drives the dynamic model. In Chapter 2, a
Bayesian intent inference framework is presented for predicting the destination
from a set of fixed and known endpoints. Then, Chapter 3 introduces an efficient
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method for predicting a static or dynamically varying intended destination, which
can be any spatial point or region within the surveillance area. The developed
methodologies have demonstrated effectiveness in handling both scenarios where
the tracked object is moving in a static environment and when experiencing
significant external perturbations. In Section 2.5 and 3.6, their performance has
been validated using real datasets involving predictive touch applications with
3D freehand pointing gestures, as well as 2D pointing-click tasks with a mouse
cursor.

7.2 Future Work

The research presented in this thesis lays a solid foundation for advanced studies in
stochastic modelling, approximate Bayesian inference, and applications in multi-object
tracking and intent inference. Several potential directions for future work are discussed
as follows.

For the stochastic modelling, there are a number of extensions based on the devel-
opments in Chapter 2 and 3. Firstly, for scenarios where knowledge of the directional
distribution of external perturbations is available, non-isotropic stable Lévy state space
models can be constructed as in [21]. Additionally, other Lévy processes with less
heavy-tailed driven noise can be developed for tracking less severely manoeuvring ob-
jects. To generate such noises, the driving process could be based on generic hyperbolic
processes instead of α-stable processes. See [19] for the formulation and simulation
of these processes, which can still yield conditionally Gaussian transition densities
by sampling the subordinator generalised inverse Gaussian processes. Regarding the
development of stochastic processes for modelling the destination reverting behaviour,
future work could involve introducing mean-reversion terms in non-linear/non-Gaussian
dynamic models that have been found useful for certain types of motions. For instance,
mean-reversion effects are introduced in [92, 164] for the intrinsic model, which can
effectively characterise both curvilinear motion and linear acceleration. Furthermore,
modelling and inferring intent in group tracking scenarios [142, 165], where targets
exhibit interactions with each other while still moving towards their intended destina-
tions, can be another promising research direction. This approach could help improve
the accuracy and effectiveness of tracking and inference tasks in complex, multi-object
situations where individual and group dynamics coexist.

With regards to approximate Bayesian inference methodology, the CVB algorithm
from Chapter 4 forms the foundation for a sequential implementation featuring the
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importance sampling particle filter. Future work could expand this implementation
into a filtering and parameter learning framework, following a similar approach to the
one presented in Section 5.3. This extension would further improve the versatility and
applicability of the CVB algorithm in a variety of sequential inference tasks. Future
work on global optimum searching in variational Bayes for localisation problems can be
directly extended to include measurements from multiple time frames. By incorporating
additional information about the object’s trajectory over time, this approach would
naturally lead to enhanced localisation results and may even allow for the reliable
inference of other unknown variables, such as Poisson rates and measurement covariance,
albeit at a slightly higher computational cost.

In terms of the multi-object tracking, it is valuable to expand the proposed varia-
tional localisation strategy to support joint detection and tracking tasks (similar to
those presented in [166, 167]), as well as to develop a more general VB-AbNHPP tracker
with relocation strategy (VB-AbNHPP-RELO) tracker that can handle other unknown
variables such as Poisson rates, measurement covariance, and target numbers. This
would enhance its versatility in tracking varying numbers of objects. Moreover, the
aforementioned extension of the sequential implementation of CVB could be utilised to
maintain multiple modes by retaining a small number of samples, which is anticipated to
improve tracking performance while still requiring less computational power compared
to MCMC-based trackers in [166]. Additionally, it is viable to develop a decentralised
implementation of the VB-AbNHPP tracker, which is expected to achieve equivalent
performance to the centralised implementation. This makes it a promising candidate
for tracking within sensor networks, as compared to other sub-optimal sensor fusion
methods (e.g. [168]). The preliminary results of these developments are showcased in
[169] and will be further explored in subsequent research.

As for the intent inference, we first note that the future work mentioned earlier on
constructing mean-reverting processes can lead to new intent inference applications
for various tracking scenarios. Furthermore, treating intent as a latent variable and
estimating it along with the kinematic state, as introduced in Chapter 3, provides an
efficient method for predicting static or dynamically varying intent. See also for its
application in detecting malicious intent, such as the intent to enter a restricted area, as
demonstrated in [170]. The efficiency of this method makes it a promising candidate for
handling more complex intent or for integration with complicated non-linear dynamic
models, where state estimation using approximate inference is already computationally
demanding. Lastly, such an intent inference framework can be easily incorporated into
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the developed VB-AbNHPP tracker, enabling the efficient inference of both intent and
kinematics states of the tracked targets under cluttered conditions.
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